Barrier height modification in Au/Ti/n-GaAs devices with a \(\hbox {HfO}_{2}\) interfacial layer formed by atomic layer deposition

  • Abdulkerim KarabulutEmail author


X-ray photoelectron spectroscopy has been carried out to characterize the surface of the hafnia \((\hbox {HfO}_{2})\) thin films grown on n-GaAs wafer by atomic layer deposition, and the surface morphology of the \(\hbox {HfO}_{2}\) layer on GaAs has been analysed using atomic force microscopy. The barrier height (BH) values of 1.03 and 0.93 eV (300 K) for the Au/Ti/\(\hbox {HfO}_{2}\)/n-GaAs structures with 3- and 5-nm \(\hbox {HfO}_{2}\) interfacial layers, respectively, have been obtained from the IV characteristics of the devices, which are higher than the value of 0.77 eV (300 K) for the Au/Ti/n-GaAs diode fabricated by us. Therefore, it can be said that the \(\hbox {HfO}_{2}\) thin layer at the metal/GaAs interface can also be used for BH modification as a gate insulator in GaAs metal-oxide semiconductor (MOS) capacitors and MOS field-effect transistors. The ideality factor values have been calculated as 1.028 and 2.72 eV at 400 and 60 K; and as 1.04 and 2.58 eV at 400 and 60 K for the metal–insulating layer–semiconductor (MIS) devices with 3- and 5-nm interfacial layers, respectively. The bias-dependent BH values have been calculated for the devices by both Norde’s method and Gaussian distribution (GD) of BHs at each sample temperature. At 320 K, the \(\Phi \)\(_\mathrm{b}(V)\) value at 0.70 V for a 3-nm MIS diode is about 1.08 eV from the \(\Phi \)\(_\mathrm{b}(V)\) vs. V curve determined by the GD, and about 0.99 eV at 0.58 V for a 5-nm MIS diode. It has been seen that these bias-dependent BH values are in close agreement with those obtained by Norde’s method for the same bias voltage values.


Barrier height modification and inhomogeneous bias-dependent barrier height metal–insulating layer–semiconductor (MIS) device atomic layer deposition (ALD) temperature-dependent MIS diode parameters 


  1. 1.
    Lee H K, Jyothi I, Janardhanam V, Shim K H, Yun H J, Lee S N et al 2016 Microelectron. Eng. 163 26CrossRefGoogle Scholar
  2. 2.
    Jyothi I, Janardhanam V, Kim J H, Yun H J, Jeong J C, Hong H et al 2016 J. Alloys Compd. 688 875CrossRefGoogle Scholar
  3. 3.
    Reddy M S P, Puneetha P, Reddy V R, Lee J H, Jeong S H and Park C 2016 J. Electron. Mater. 45 5655CrossRefGoogle Scholar
  4. 4.
    Kukli K, Ritala M, Sajavaara T, Keinonen J and Leskela M 2002 Thin Solid Films 416 72CrossRefGoogle Scholar
  5. 5.
    Aldemir D A, Kökce A and Özdemir A F 2017 Bull. Mater. Sci. 40 1435CrossRefGoogle Scholar
  6. 6.
    Rhoderick E H and Williams R H 1988 Metal-semiconductor contacts, 2nd edn. (Oxford, England: Oxford University Press)Google Scholar
  7. 7.
    Neamen D A 1992 Semiconductor physics and devices (Boston, USA: Irwin)Google Scholar
  8. 8.
    Sze S M 1981 Physics of semiconductor devices, 2nd edn. (New York, USA: John Wiley & Sons)Google Scholar
  9. 9.
    Williams R H and Robinson G Y 1985 Physics and chemistry of III–V compound semiconductor interfaces (New York, USA: Plenum)Google Scholar
  10. 10.
    Mönch W 1995 Semiconductor surfaces and interfaces, 2nd edn. (Berlin, Germany: Springer)CrossRefGoogle Scholar
  11. 11.
    Mao P, Wei Y, Lib H and Wang J 2017 Nano Energy 41 717CrossRefGoogle Scholar
  12. 12.
    Eglash S J, Newman N, Pan S, Mo D, Shenai K, Spicer W E et al 1987 J. Appl. Phys. 61 5159CrossRefGoogle Scholar
  13. 13.
    Kocyigit A, Orak I, Aydoğan Ş, Çaldıran Z and Turut A 2017 J. Mater. Sci.: Mater. Electron. 28 5880Google Scholar
  14. 14.
    Chin V W L, Green M A and Storey J W V 1993 Solid State Electron. 36 1107CrossRefGoogle Scholar
  15. 15.
    He G, Zhang L D, Liu M and Sun Z Q 2010 Appl. Phys. Lett. 97 062908CrossRefGoogle Scholar
  16. 16.
    Shahrjerdi D, Garcia-Gutierrez D I, Akyol T, Bank S R, Tutuc E, Lee J C et al 2007 Appl. Phys. Lett. 91 193503Google Scholar
  17. 17.
    Diale M and Auret F D 2009 Physica B 404 4415CrossRefGoogle Scholar
  18. 18.
    Aydin M E, Akkilic K and Kilicoglu T 2004 Appl. Surf. Sci. 225 318CrossRefGoogle Scholar
  19. 19.
    Biber M, Temirci C and Turut A 2002 J. Vac. Sci. Technol. B 20 10CrossRefGoogle Scholar
  20. 20.
    Ashery A, Elnasharty M M M, Farag A A M, Salem M A and Nasralla N 2017 Superlattices Microstruct. 109 662CrossRefGoogle Scholar
  21. 21.
    Ebeoglu M A and Temurtas F 1998 Solid-State Electron. 42 23CrossRefGoogle Scholar
  22. 22.
    Budhraja V, Wang X and Misra D 2010 J. Mater. Sci.: Mater. Electron. 21 1322Google Scholar
  23. 23.
    Budhraja V and Misra D 2008 ECS Trans. 16 455CrossRefGoogle Scholar
  24. 24.
    Reddy V R, Janardhanam V, Won J and Choi C J 2017 J. Colloid Interface Sci. 499 180CrossRefGoogle Scholar
  25. 25.
    Vural Ö, Safak Y, Altındal S and Turut A 2010 Curr. Appl. Phys. 10 761CrossRefGoogle Scholar
  26. 26.
    Biyikli N, Karabulut A, Efeoglu H, Guzeldir B and Turut A 2014 Phys. Scr. 89 095804CrossRefGoogle Scholar
  27. 27.
    Reddy V R, Reddy Y M, Padmasuvarna R and Narasappa T L 2015 Procedia Mater. Sci. 10 666Google Scholar
  28. 28.
    Zhu S, Detavernier C, Van Meirhaeghe R L, Cardon F, Ru G P, Qu X P et al 2000 Solid-State Electron. 44 1807CrossRefGoogle Scholar
  29. 29.
    Dalapati G K, Kumar M K, Chia C K, Gao H, Wang B Z, Wong A S W et al 2010 J. Electrochem. Soc. 157 H825CrossRefGoogle Scholar
  30. 30.
    Barreca D, Milanov A, Fischer R A, Devi A and Tondello E 2007 Surf. Sci. Spectra 14 34CrossRefGoogle Scholar
  31. 31.
    Al-Kuhaili M F, Durrani S M A and Khawaja E E 2004 J. Phys. D: Appl. Phys. 37 1254CrossRefGoogle Scholar
  32. 32.
    Turgut G, Aksoy G, İskenderoğlu D, Turgut U and Duman S 2017 Ceram. Int. 44 3921CrossRefGoogle Scholar
  33. 33.
    Turgut G, Kurt M S, Ertuğrul M, İskenderoglu D, Duman S and Gurbulak B 2008 Optik 165 310CrossRefGoogle Scholar
  34. 34.
    Kahveci O, Akkaya A, Ayyildiz E and Turut A 2017 Surf. Rev. Lett. 24 1750047CrossRefGoogle Scholar
  35. 35.
    Jiang Y L, Ru G P, Lu F, Qu X P, Li B Z, Li W et al 2002 Chin. Phys. Lett. 19 553CrossRefGoogle Scholar
  36. 36.
    Chin V W L, Green M A and Storey J W V 1990 J. Appl. Phys. 68 3470CrossRefGoogle Scholar
  37. 37.
    Bouiadjra W B, Saidane A, Mostefa A, Henini M and Shaf M 2014 Superlattices Microstruct. 71 225CrossRefGoogle Scholar
  38. 38.
    Norde H 1979 J. Appl. Phys. 50 5052CrossRefGoogle Scholar
  39. 39.
    Sato K and Yasumura Y 1985 J. Appl. Phys. 58 3655CrossRefGoogle Scholar
  40. 40.
    Ayyildiz E, Temirci C, Bati B and Turut A 2001 Int. J. Electron. 88 625CrossRefGoogle Scholar
  41. 41.
    Werner J H and Güttler H H 1991 J. Appl. Phys. 69 1522CrossRefGoogle Scholar
  42. 42.
    Song Y P, Van Meirhaeghe R L, Laflére W H and Cardon F 1986 Solid-State Electron. 29 633CrossRefGoogle Scholar
  43. 43.
    Chand S and Kumar J 1997 Appl. Phys. A 65 497CrossRefGoogle Scholar
  44. 44.
    Yakuphanoglu F and Senkal B F 2008 Synth. Met. 158 821CrossRefGoogle Scholar
  45. 45.
    Huang W C, Lin T C, Horng C T and Li Y H 2013 Mater. Sci. Semicond. Process 16 418CrossRefGoogle Scholar
  46. 46.
    Osvald J 2006 Solid State Commun. 138 39CrossRefGoogle Scholar
  47. 47.
    Maeda T, Okada M, Ueno M, Yamamoto Y, Kimoto T, Horita M et al 2017 Appl. Phys. Exp. 10 051002CrossRefGoogle Scholar
  48. 48.
    Kavasoglu N, Kavasoglu A S and Metin B 2015 Mater. Res. Bull. 70 804CrossRefGoogle Scholar
  49. 49.
    Huang W C, Lin T C, Horng C T and Li Y H 2013 Mater. Sci. Semicond. Process. 16 418CrossRefGoogle Scholar
  50. 50.
    Karadan P, Parida S, Kumar A, Anappara A A, Dhara S and Barshilia H C 2017 Appl. Phys. A 123 681CrossRefGoogle Scholar
  51. 51.
    Yıldırım N, Turut V and Turut A 2010 Microelectron. Eng. 87 2225CrossRefGoogle Scholar
  52. 52.
    Yıldırım N and Turut A 2009 Microelectron. Eng. 86 2270CrossRefGoogle Scholar
  53. 53.
    Chand S and Bala S 2005 Appl. Surf. Sci. 252 358CrossRefGoogle Scholar
  54. 54.
    Anılturk O S and Turan R 2000 Solid-State Electron. 44 41CrossRefGoogle Scholar
  55. 55.
    Yoo K and Lee J H 2017 IEEE Elect. Dev. Lett. 38 426CrossRefGoogle Scholar
  56. 56.
    Jabli F, Gassoumi M, Ben Hamadi N, Charfeddine M, Alharbi T, Zaidi M A et al 2017 Silicon 9 629CrossRefGoogle Scholar
  57. 57.
    Bestas A N, Yazıcı S, Aktas F and Abay B 2014 Appl. Surf. Sci. 318 280CrossRefGoogle Scholar
  58. 58.
    He Q, Mu W, Dong H, Long S, Jia Z, Lv H et al 2017 Appl. Phys. Lett. 110 093503CrossRefGoogle Scholar
  59. 59.
    Kumar R and Chand S 2016 Solid State Sci. 58 115CrossRefGoogle Scholar
  60. 60.
    Taşer A, Güzeldir B and Sağlam M 2017 Mater. Sci. Semicond. Process. 68 186CrossRefGoogle Scholar
  61. 61.
    Kaushal P and Chand S 2016 Int. J. Electron. 103 937CrossRefGoogle Scholar
  62. 62.
    Mahato S and Puigdollers J 2018 Physica B 530 327CrossRefGoogle Scholar
  63. 63.
    Güllü H H, Bayraklı Ö, Yildiz D E and Parlak M 2017 J. Mater. Sci.: Mater. Electron. 28 17806Google Scholar
  64. 64.
    Singh R, Sharma P, Khan M A, Garg V, Awasthi V, Kranti A et al 2016 J. Phys. D: Appl. Phys. 49 445303CrossRefGoogle Scholar
  65. 65.
    Sevgili O, Yılmaz S, Altındal S, Bacaksız E and Bilkan C 2017 Proc. Natl. Acad. Sci., India, Sect. A 87 409Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics Engineering, Faculty of EngineeringSinop UniversitySinopTurkey

Personalised recommendations