Influence of the electrochemical properties of vanadium oxides on specific capacitance by molybdenum doping

  • Yuting Huang
  • Yifu ZhangEmail author


Molybdenum (Mo)-doped vanadium dioxide (\(\hbox {VO}_{2}\)(B)) nanobelts were successfully synthesized using commercial vanadium pentoxide (\(\hbox {V}_{2}\hbox {O}_{5}\)) as the starting material and ammonium molybdate as the dopant by a simple hydrothermal route. Then, Mo-doped \(\hbox {VO}_{2}\)(B) nanobelts were transformed to Mo-doped \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts by calcination at \(400{^{\circ }}\hbox {C}\) under an air atmosphere. The samples were characterized by X-ray powder diffraction, energy-dispersive X-ray spectrometer, elemental mapping, X-ray photoelectron spectroscopy, X-ray fluorescence and transmission electron microscopy techniques. The results showed that Mo-doped \(\hbox {VO}_{2}\)(B) and \(\hbox {V}_{2}\hbox {O}_{5}\) solid solution with high purity were obtained. The electrochemical properties of Mo-doped \(\hbox {VO}_{2}\)(B) and \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts as supercapacitor electrodes were measured using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD). The specific capacitance of \(\hbox {VO}_{2}\)(B) nanobelts slightly declines with Mo doping, however, the specific capacitance of \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts greatly improves with Mo doping. Mo-doped \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts exhibit the specific capacitance as high as 526 F \(\hbox {g}^{-1}\) at the current density of 1 A \(\hbox {g}^{-1}\). Both CV and GCD curves show that they have good rate capability and retain 464, 380, 324 and 273 F \(\hbox {g}^{-1}\) even at a high-current density of 2, 5, 10 and 20 A \(\hbox {g}^{-1}\), respectively. It turns out that Mo-doped \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts are ideal materials for supercapacitor electrodes in the present work.


Mo-doped \(\hbox {VO}_{2}\)(B) nanobelts Mo-doped \(\hbox {V}_{2}\hbox {O}_{5}\) nanobelts chemical synthesis electrochemical properties specific capacitance 



This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 21601026 and 21771030) and Doctoral Research Foundation of Liaoning Province (201601035).


  1. 1.
    Yu Z, Tetard L, Zhai L and Thomas J 2015 Energy Environ. Sci. 8 702CrossRefGoogle Scholar
  2. 2.
    Zhong C, Deng Y, Hu W, Qiao J, Zhang L and Zhang J 2015 Chem. Soc. Rev. 44 7484CrossRefGoogle Scholar
  3. 3.
    Zhang Y and Meng C 2015 Mater. Lett. 160 404CrossRefGoogle Scholar
  4. 4.
    Yu M, Qiu W, Wang F, Zhai T, Fang P, Lu X et al 2015 J. Mater. Chem. A 3 15792CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Zheng J, Wang Q, Hu T and Meng C 2016 RSC Adv. 6 93741CrossRefGoogle Scholar
  6. 6.
    Jing X, Wang C, Feng W, Xing N, Jiang H, Lu X et al 2018 R. Soc. Open Sci. 5 171768CrossRefGoogle Scholar
  7. 7.
    Zhang Y 2018 Chem. Sel. 3 1577Google Scholar
  8. 8.
    Xia X, Zhang Y, Chao D, Guan C, Zhang Y, Li L et al 2014 Nanoscale 6 5008CrossRefGoogle Scholar
  9. 9.
    Zhang L L and Zhao X S 2009 Chem. Soc. Rev. 38 2520CrossRefGoogle Scholar
  10. 10.
    Zheng J, Zhang Y, Wang N, Zhao Y, Tian F and Meng C 2016 Mater. Lett. 171 240CrossRefGoogle Scholar
  11. 11.
    Singh A and Chandra A 2015 Sci. Rep. 5 15551CrossRefGoogle Scholar
  12. 12.
    Trasatti S and Kurzweil I 1994 Platinum Met. Rev. 38 46Google Scholar
  13. 13.
    Perera S D, Rudolph M, Mariano R G, Nijem N, Ferraris J P, Chabal Y J et al 2013 Nano Energy 2 966CrossRefGoogle Scholar
  14. 14.
    Wang Q, Zhang Y, Zheng J, Wang Y, Hu T and Meng C 2017 Dalton Trans. 46 4303CrossRefGoogle Scholar
  15. 15.
    Umeshbabu E and Ranga Rao G 2016 J. Colloid Interface Sci. 472 210CrossRefGoogle Scholar
  16. 16.
    Mu J, Wang J, Hao J, Cao P, Zhao S, Zeng W et al 2015 Ceram. Int. 41 12626CrossRefGoogle Scholar
  17. 17.
    Peng T, Wang J, Liu Q, Liu J and Wang P 2015 CrystEngComm 17 1673CrossRefGoogle Scholar
  18. 18.
    Guo Y, Li J, Chen M and Gao G 2015 J. Power Sources 273 804CrossRefGoogle Scholar
  19. 19.
    Wang N, Zhang Y, Hu T, Zhao Y and Meng C 2015 Curr. Appl. Phys. 15 493CrossRefGoogle Scholar
  20. 20.
    Zhang Y and Huang Y 2016 Mater. Lett. 182 285CrossRefGoogle Scholar
  21. 21.
    Liang L, Liu H and Yang W 2013 J. Alloys Compd. 559 167CrossRefGoogle Scholar
  22. 22.
    Xu L, Zhang Y, Deng Y, Zhong Y, Mo S, Cheng G et al 2013 Mater. Res. Bull. 48 3620CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Huang Y, Zhang J, Wu W, Niu F, Zhong Y et al 2012 Mater. Res. Bull. 47 1978CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Fan M, Zhou M, Huang C, Chen C, Cao Y et al 2012 Bull. Mater. Sci. 35 369CrossRefGoogle Scholar
  25. 25.
    Xu L, Zhang Y, Zhang X, Huang Y, Tan X, Huang C et al 2014 Bull. Mater. Sci. 37 1397CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Zheng J, Wang Q, Zhang S, Hu T and Meng C 2017 Appl. Surf. Sci. 423 728CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Jing X, Wang Q, Zheng J, Jiang H and Meng C 2017 Dalton Trans. 46 15048CrossRefGoogle Scholar
  28. 28.
    Zheng J, Zhang Y, Wang Q, Jiang H, Liu Y, Lv T et al 2018 Dalton Trans. 47 452CrossRefGoogle Scholar
  29. 29.
    Hu T, Liu Y, Zhang Y, Nie Y, Zheng J, Wang Q et al 2018 Microporous Mesoporous Mater. 262 199CrossRefGoogle Scholar
  30. 30.
    Zhu J, Cao L, Wu Y, Gong Y, Liu Z, Hoster H E et al 2013 Nano Lett. 13 5408CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Zheng J, Zhao Y, Hu T, Gao Z and Meng C 2016 Appl. Surf. Sci. 377 385CrossRefGoogle Scholar
  32. 32.
    Saravanakumar B, Purushothaman K K and Muralidharan G 2012 ACS Appl. Mater. Interfaces 4 4484CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Zheng J, Hu T, Tian F and Meng C 2016 Appl. Surf. Sci. 371 189CrossRefGoogle Scholar
  34. 34.
    Yang J, Lan T, Liu J, Song Y and Wei M 2013 Electrochim. Acta 105 489CrossRefGoogle Scholar
  35. 35.
    Wee G, Soh H Z, Cheah Y L, Mhaisalkar S G and Srinivasan M 2010 J. Mater. Chem. 20 6720CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Zheng J, Wang Q, Hu T, Tian F and Meng C 2017 Appl. Surf. Sci. 399 151CrossRefGoogle Scholar
  37. 37.
    Zhi M, Xiang C, Li J, Li M and Wu N 2013 Nanoscale 5 72CrossRefGoogle Scholar
  38. 38.
    Qian T, Xu N, Zhou J, Yang T, Liu X, Shen X et al 2015 J. Mater. Chem. A 3 488CrossRefGoogle Scholar
  39. 39.
    Wu Y, Gao G and Wu G 2015 J. Mater. Chem. A 3 1828CrossRefGoogle Scholar
  40. 40.
    Jeyalakshmi K, Vijayakumar S, Purushothaman K K and Muralidharan G 2013 Mater. Res. Bull. 48 2578CrossRefGoogle Scholar
  41. 41.
    Zheng J, Zhang Y, Jing X, Wang Q, Hu T, Xing N et al 2017 Mater. Chem. Phys. 166 5CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Chen C, Wu W, Niu F, Liu X, Zhong Y et al 2013 Ceram. Int. 39 129CrossRefGoogle Scholar
  43. 43.
    Theobald F, Cabala R and Bernard J 1976 J. Solid State Chem. 17 431CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Li W, Fan M, Zhang F, Zhang J, Liu X et al 2012 J. Alloys Compd. 544 30CrossRefGoogle Scholar
  45. 45.
    Enjalbert R and Galy J 1986 Acta Crystallogr. C 42 1467CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Zhang J, Zhang X, Mo S, Wu W, Niu F et al 2013 J. Alloys Compd. 570 104CrossRefGoogle Scholar
  47. 47.
    Silversmit G, Depla D, Poelman H, Marin G B and Gryse R D 2004 J. Electron Spectrosc. 135 167CrossRefGoogle Scholar
  48. 48.
    Wagner C D, Riggs W M, Davis L E and Moulder J F 1979 Handbook of X-ray photoelectrom spectroscopy (Minnesota: Perkin-Elmer Corporation)Google Scholar
  49. 49.
    Tang C, Georgopoulos P, Fine M E, Cohen J B, Nygren M, Knapp G S et al 1985 Phys. Rev. B 31 1000CrossRefGoogle Scholar
  50. 50.
    Manning T D, Parkin I P, Blackman C and Qureshi U 2005 J. Mater. Chem. 15 4560CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Zhang J, Zhang X, Deng Y, Zhong Y, Huang C et al 2013 Ceram. Int. 39 8363CrossRefGoogle Scholar
  52. 52.
    Qi J L, Wang X, Lin J H, Zhang F, Feng J C and Fei W D 2015 J. Mater. Chem. A 3 12396CrossRefGoogle Scholar
  53. 53.
    Delmas C, Cognac-Auradou H, Cocciantelli J M, Menetrier M and Doumerc J P 1994 Solid State Ion. 69 257CrossRefGoogle Scholar
  54. 54.
    Deng L, Zhang G, Kang L, Lei Z, Liu C and Liu Z-H 2013 Electrochim. Acta 112 448CrossRefGoogle Scholar
  55. 55.
    Lao Z J, Konstantinov K, Tournaire Y, Ng S H, Wang G X and Liu H K 2006 J. Power Sources 162 1451CrossRefGoogle Scholar
  56. 56.
    Lin Z, Yan X, Lang J, Wang R and Kong L-B 2015 J. Power Sources 279 358CrossRefGoogle Scholar
  57. 57.
    Chen Z, Qin Y, Weng D, Xiao Q, Peng Y, Wang X et al 2009 Adv. Funct. Mater. 19 3420CrossRefGoogle Scholar
  58. 58.
    Reddy R N and Reddy R G 2006 J. Power Sources 156 700CrossRefGoogle Scholar
  59. 59.
    Lala N L, Jose R, Yusoff M M and Ramakrishna S 2012 J. Nanopart. Res. 14 1201Google Scholar
  60. 60.
    Cao L, Zhu J, Li Y, Xiao P, Zhang Y, Zhang S et al 2014 J. Mater. Chem. A 2 13136CrossRefGoogle Scholar
  61. 61.
    Jeyalakshmi K, Vijayakumar S, Nagamuthu S and Muralidharan G 2013 Mater. Res. Bull. 48 760CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of ChemistryDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations