Advertisement

Hybrid bilayer gate dielectric-based organic thin film transistors

  • BABU RAVI TEJA KARRIEmail author
  • NAVNEET GUPTA
Article
  • 47 Downloads

Abstract

Organic thin film transistors (OTFTs) are key building blocks for flexible, low cost electronics systems. They provide a viable alternative for silicon-based electronics with added advantages of low cost and flexibility. However, few issues like high-operating voltage, low-switching speed, high-leakage current and reliability are still a challenge. The overall performance of an OTFT depends on organic semiconductors and gate dielectric interface. In this paper, we review the current status and trends in the choice of dielectric layer for OTFTs. As a starting point, the performance parameters of an OTFT and their dependence on the dielectric layer are briefly discussed. A variety of dielectric materials which includes high-k inorganic, organic, surface coated inorganics and nanocomposites are also presented. The advantages and drawbacks of each of these materials are discussed in detail. We reviewed the latest developments in the dielectric materials especially, self-assembled monolayers (SAMs), hybrid bilayers and nanocomposites. SAM-based OTFTs offer several advantages but shift in the threshold voltage remains a concern. Nanocomposites are a latest addition to the dielectric materials, which offer advantages like solution processing and improved dielectric constant but have a rough surface. A hybrid bilayer that incorporates the inorganic dielectric as a base layer and a thin polymer layer over it to improve the surface properties offers several desirable characteristics over the other choices. Hence, we propose that hybrid bilayer gate dielectrics shall play a pivotal role in improving the OTFT performance.

Keywords

Organic thin film transistor gate dielectric high-k inorganic low-k organic self-assembled monolayer hybrid bilayer 

References

  1. 1.
    Ryu G S, Kim J S, Jeong S H and Song C K 2013 Org. Electron. Phys. Mater. Appl. 14 1218Google Scholar
  2. 2.
    Cantatore E, Geuns T C T, Gelinck G H, Van Veenendaal E, Gruijthuijsen A F A, Schrijnemakers L et al 2007 IEEE J. Solid-State Circuits 42 84CrossRefGoogle Scholar
  3. 3.
    Sokolov A N, Tee B C K, Bettinger C J, Tok J B H and Bao Z 2012 Acc. Chem. Res. 45 361CrossRefGoogle Scholar
  4. 4.
    Ling Q D, Liaw D J, Zhu C, Chan D S H, Kang E T and Neoh K G 2008 Prog. Polym. Sci. 33 917CrossRefGoogle Scholar
  5. 5.
    Pantisano L, Blomme P, Kaczer B, Groeseneken G and Akinwande A I 2005 IEEE J. Solid-State Circuits 52 2819Google Scholar
  6. 6.
    Zaumseil J and Sirringhaus H 2007 Chem. Rev. 107 1296CrossRefGoogle Scholar
  7. 7.
    Stallinga P 2011 Adv. Mater. 23 3356CrossRefGoogle Scholar
  8. 8.
    Zschieschang U, Ante F, Kälblein D, Yamamoto T, Takimiya K, Kuwabara H et al 2011 Org. Electron. 12 370CrossRefGoogle Scholar
  9. 9.
    Melville O A, Lessard B H and Bender T P 2015 ACS Appl. Mater. Interfaces 7 13105CrossRefGoogle Scholar
  10. 10.
    Choe Y, Hye M, Kim J, Ryu G, Noh Y, Ho Y et al 2016 Org. Electron. 36 171CrossRefGoogle Scholar
  11. 11.
    Deng L F, Tang W M, Leung C H, Lai P T, Xu J P and Chec C M 2008 Electron devices solid-state circuits 2008 EDSSC 2008 IEEE Int. Conf. 1Google Scholar
  12. 12.
    Li J, Zhao Y, Tan H S, Guo Y, Di C A, Yu G et al 2012 Sci. Rep. 2 754CrossRefGoogle Scholar
  13. 13.
    Tang W, Li J, Zhao J, Zhang W, Yan F and Guo X 2015 IEEE Electron. Device Lett. 36 950CrossRefGoogle Scholar
  14. 14.
    Katz H E and Bao Z 2000 J. Phys. Chem. B 104 671CrossRefGoogle Scholar
  15. 15.
    Yi M, Guo Y, Guo J, Yang T, Chai Y, Fan Q et al 2014 J. Mater. Chem. C 2 2998CrossRefGoogle Scholar
  16. 16.
    Kim J W, Oh J D, Kim D, Lee H Y, Ha Y G and Choi J H 2016 J. Mater. Chem. C 4 7999CrossRefGoogle Scholar
  17. 17.
    Huang T H, Liu K C, Pei Z, Lin W K and Chang S T 2011 Org. Electron. Phys., Mater. Appl. 12 1527Google Scholar
  18. 18.
    Kraft U, Sejfi M, Kang M J, Takimiya K, Zaki T, Letzkus F et al 2015 Adv. Mater. 27 998Google Scholar
  19. 19.
    Wrachien N, Cester A, Lago N, Rizzo A, D’Alpaos R, Stefani A et al 2015 Solid State Electron. 113 151CrossRefGoogle Scholar
  20. 20.
    Fan C L, Chiu P C, Lin Y Z, Yang T H and Chiang C Y 2011 Semicond. Sci. Technol. 26 125007CrossRefGoogle Scholar
  21. 21.
    Chen H M, Chang T C, Tai Y H, Chiang H C, Liu K H, Chen M C et al 2016 IEEE Electron. Device Lett. 37 228CrossRefGoogle Scholar
  22. 22.
    Roichman Y and Tessler N 2002 Appl. Phys. Lett. 80 151CrossRefGoogle Scholar
  23. 23.
    Feng L, Xu X and Guo X 2011 ECS Trans. 37 105CrossRefGoogle Scholar
  24. 24.
    Mittal P, Negi Y S and Singh R K 2016 Microelectron. Eng. 150 7CrossRefGoogle Scholar
  25. 25.
    Shim C, Maruoka F and Hattori R 2010 IEEE Trans. Electron. Devices 57 195CrossRefGoogle Scholar
  26. 26.
    Li C, Pan F, Wang X, Wang L, Wang H, Wang H et al 2009 Org. Electron. 10 948CrossRefGoogle Scholar
  27. 27.
    Zocco A T, You H, Hagen J A and Steckl A J 2014 Nanotechnology 25 094550CrossRefGoogle Scholar
  28. 28.
    Zhou Y, Fuentes-hernandez C, Shim J, Meyer J, Giordano A J, Li H et al 2012 Science 336 327CrossRefGoogle Scholar
  29. 29.
    Kumar B, Kaushik B K and Negi Y S 2014 J. Mater. Sci. Mater. Electron. 25 1CrossRefGoogle Scholar
  30. 30.
    Dimitrakopoulos C D and Malenfant P R L 2002 Adv. Mater. 14 99CrossRefGoogle Scholar
  31. 31.
    Kumar Singh V and Mazhari B 2013 Appl. Phys. Lett. 102 253304CrossRefGoogle Scholar
  32. 32.
    Meijer E J, Tanase C, Blom P W M, Van Veenendaal E, Huisman B H, De Leeuw D M et al 2002 Appl. Phys. Lett. 80 3838CrossRefGoogle Scholar
  33. 33.
    Horowitz G, Hajlaoui M E and Hajlaoui R 2000 J. Appl. Phys. 87 4456CrossRefGoogle Scholar
  34. 34.
    Cui Q, Gu C, Liu J, Feng L, Wang S and Guo X 2014 J. Disp. Technol. 10 615CrossRefGoogle Scholar
  35. 35.
    Horowitz B G, Lang P, Mottaghi M and Aubin H 2004 Adv. Funct. Mater. 14 1069CrossRefGoogle Scholar
  36. 36.
    Marinov O, Jamal Deen M, Feng C and Wu Y 2014 J. Appl. Phys. 115 345061CrossRefGoogle Scholar
  37. 37.
    Cheng S S, Yang C Y, Ou C W, Chuang Y C, Wu M C and Chu C W 2008 Electrochem. Solid-State Lett. 11 H118CrossRefGoogle Scholar
  38. 38.
    Kalb W L and Batlogg B 2010 Phys. Rev. B - Condens. Matter Mater. Phys. 81 1Google Scholar
  39. 39.
    Liu Z, Oh J H, Roberts M E, Wei P, Paul B C and Okajima M 2009 Appl. Phys. Lett. 94 132Google Scholar
  40. 40.
    Seong H, Baek J, Pak K and Im S G 2015 Adv. Funct. Mater. 25 4462CrossRefGoogle Scholar
  41. 41.
    Kim S Y, Ahn T, Pyo S and Yi M 2009 Curr. Appl. Phys. 9 913CrossRefGoogle Scholar
  42. 42.
    Yuan G C, Xu Z, Gong C, Cai Q J, Lu Z S, Shi J S et al 2009 Appl. Phys. Lett. 94 151105CrossRefGoogle Scholar
  43. 43.
    Wang W, Han J, Ying J, Xiang L and Xie W 2014 Appl. Phys. Lett. 105 1Google Scholar
  44. 44.
    Dimitrakopoulos C D 1999 Science 283 822CrossRefGoogle Scholar
  45. 45.
    Lee J B, Chang P C, Liddle J A and Subramanian V 2005 IEEE Trans. Electron. Devices 52 1874CrossRefGoogle Scholar
  46. 46.
    Islam M N 2011 J. Appl. Phys. 110 1149061CrossRefGoogle Scholar
  47. 47.
    Kim H, Bae J H, Lee S D and Horowitz G 2012 Org. Electron. Phys., Mater. Appl. 13 1255Google Scholar
  48. 48.
    Seol Y G, Noh H Y, Lee S S, Ahn J H and Lee N E 2008 Appl. Phys. Lett. 93 1CrossRefGoogle Scholar
  49. 49.
    Hengen S, Alt M, Hernandez-Sosa G, Giehl J, Lemmer U and Mechau N 2014 Org. Electron. 15 829CrossRefGoogle Scholar
  50. 50.
    Wang W, Ma D, Pan S and Yang Y 2012 Appl. Phys. Lett. 101 031901CrossRefGoogle Scholar
  51. 51.
    Ha T J 2014 Appl. Phys. Lett. 105 114CrossRefGoogle Scholar
  52. 52.
    Noh Y H, Young Park S, Seo S M, Lee H H, Park S Y, Seo S M et al 2006 Org. Electron. Phys., Mater. Appl. 7 271Google Scholar
  53. 53.
    Huang T H, Pei Z, Lin W K, Chang S T and Liu K C 2010 Thin Solid Films 518 7381CrossRefGoogle Scholar
  54. 54.
    Diemer P J, Hayes J, Welchman E, Hallani R, Pookpanratana S J, Hacker C A et al 2017 Adv. Electron. Mater. 3 1600294CrossRefGoogle Scholar
  55. 55.
    Orgiu E, Locci S, Fraboni B, Scavetta E, Lugli P and Bonfiglio A 2011 Org. Electron. Phys., Mater. Appl. 12 477Google Scholar
  56. 56.
    Lee S, Koo B, Shin J, Lee E, Park H and Kim H 2006 Appl. Phys. Lett. 88 162109CrossRefGoogle Scholar
  57. 57.
    Veres J, Ogier S, Lloyd G and De Leeuw D 2004 Chem. Mater. 16 4543CrossRefGoogle Scholar
  58. 58.
    Ortiz P, Facchetti A and Marks T J 2010 Chem. Rev. 110 205CrossRefGoogle Scholar
  59. 59.
    Facchetti A, Yoon M H and Marks T J 2005 Adv. Mater. 17 1705CrossRefGoogle Scholar
  60. 60.
    Bersuker G, Zeitzoff P, Brown G and Huff H R 2004 Mater. Today 7 26CrossRefGoogle Scholar
  61. 61.
    Tan H S, Cahyadi T, Wang Z B, Lohani A, Tsakadze Z, Zhang S et al 2008 IEEE Electron. Device Lett. 29 698CrossRefGoogle Scholar
  62. 62.
    Lin Y J, Tsao H Y and Liu D S 2015 J. Mater. Sci. Mater. Electron. 26 2579CrossRefGoogle Scholar
  63. 63.
    Koo J B, Ku C H, Lim S C, Kim S H and Lee J H 2007 Appl. Phys. Lett. 90 2005Google Scholar
  64. 64.
    Ali K, Kim C Y and Choi K H 2014 J. Mater. Sci. Mater. Electron. 25 1922CrossRefGoogle Scholar
  65. 65.
    Yoon W J and Berger P R 2010 Org. Electron. Phys., Mater. Appl. 11 1719Google Scholar
  66. 66.
    Wei C Y, Kuo S H, Hung Y M, Huang W C, Adriyanto F and Wang Y H 2011 IEEE Electron. Device Lett. 32 90CrossRefGoogle Scholar
  67. 67.
    He W, Xu W, Peng Q, Liu C, Zhou G, Wu S et al 2016 J. Phys. Chem. C 120 9949CrossRefGoogle Scholar
  68. 68.
    Bartic C, Jansen H, Campitelli A and Borghs S 2002 Org. Electron. 3 65CrossRefGoogle Scholar
  69. 69.
    Lu Y, Lee W H, Lee H S, Jang Y, Cho K, Lu Y et al 2009 Appl. Phys. Lett. 94 85Google Scholar
  70. 70.
    Yun Y, Pearson C and Petty M C 2009 J. Appl. Phys. 105 034508CrossRefGoogle Scholar
  71. 71.
    Klauk H 2010 Chem. Soc. Rev. 39 2643CrossRefGoogle Scholar
  72. 72.
    Veres J, Ogier S D, Leeming S W, Cupertino D C and Khaffaf S M 2003 Adv. Funct. Mater. 13 199CrossRefGoogle Scholar
  73. 73.
    Yang S Y, Shin K and Park C E 2005 Adv. Funct. Mater. 15 1806CrossRefGoogle Scholar
  74. 74.
    Jeong S, Kim D, Lee S, Park B K and Moon J 2006 Appl. Phys. Lett. 89 92101CrossRefGoogle Scholar
  75. 75.
    Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W and Weber W 2002 J. Appl. Phys. 92 5259CrossRefGoogle Scholar
  76. 76.
    Kato Y, Iba S, Teramoto R, Sekitani T, Someya T, Kawaguchi H et al 2004 Appl. Phys. Lett. 84 3789CrossRefGoogle Scholar
  77. 77.
    Choi J, Seong H, Pak K and Im S G 2016 J. Inf. Disp. 17 43CrossRefGoogle Scholar
  78. 78.
    Ng T N, Daniel J H, Sambandan S, Arias A C, Chabinyc M L and Street R A 2008 J. Appl. Phys. 103 44506CrossRefGoogle Scholar
  79. 79.
    Dibenedetto B S A, Facchetti A, Ratner M A, Marks T J, DiBenedetto S A, Facchetti A et al 2009 Adv. Mater. 21 1407CrossRefGoogle Scholar
  80. 80.
    Novak M, Jager C M, Rumpel A, Kropp H, Peukert W, Clark T et al 2010 Org. Electron. Phys., Mater. Appl. 11 1476Google Scholar
  81. 81.
    Deman A L and Tardy J 2005 Org. Electron. Phys., Mater. Appl. 6 78Google Scholar
  82. 82.
    Deng L F, Lai P T, Chen W B, Xu J P, Liu Y R, Choi H W et al 2011 IEEE Electron. Device Lett. 32 93CrossRefGoogle Scholar
  83. 83.
    Kim J M, Lee J W, Kim J K, Ju B K, Kim J S, Lee Y H et al 2004 Appl. Phys. Lett. 85 6368CrossRefGoogle Scholar
  84. 84.
    Roh J, Lee C, Kwak J, Jung B J and Kim H, 2015 J. Korean Phys. Soc. 67 941CrossRefGoogle Scholar
  85. 85.
    Pernstich K P, Haas S, Oberhoff D, Goldmann C, Gundlach D J, Batlogg B et al 2004 J. Appl. Phys. 96 6431CrossRefGoogle Scholar
  86. 86.
    Yu S H, Cho J, Ha J U and Chung D S 2017 Org. Electron. 41 327CrossRefGoogle Scholar
  87. 87.
    Ma H, Acton O, Ting G, Ka J W, Yip H, Tucker N et al 2008 Appl. Phys. Lett. 92 1Google Scholar
  88. 88.
    Acton O, Ii G T, Ma H, Hutchins D, Wang Y, Purushothaman B et al 2009 J. Mater. Chem. C 19 7929CrossRefGoogle Scholar
  89. 89.
    Aghamohammadi M, Ro R, Zschieschang U, Ocal C, Boschker H, Weitz R T et al 2015 Appl. Mater. Interfaces 7 22775CrossRefGoogle Scholar
  90. 90.
    Liu D, Xu X, Su Y, He Z, Xu J and Miao Q 2013 Angew. Chem. — Int. Ed. 52 6222CrossRefGoogle Scholar
  91. 91.
    Jinno H, Yokota T, Matsuhisa N, Kaltenbrunner M, Tachibana Y and Someya T 2017 Org. Electron. Phys., Mater. Appl. 40 58Google Scholar
  92. 92.
    Salinas M, Jäger C M, Amin A Y, Dral P O, Meyer-friedrichsen T, Hirsch A et al 2012 J. Am. Chem. Soc. 134 12648CrossRefGoogle Scholar
  93. 93.
    Seo J H, Kwon J H, Shin S I, Suh K S, Ju B K, Seo J H et al 2007 Semicond. Sci. Technol. 22 1039Google Scholar
  94. 94.
    Wang Y, Acton O, Ting G, Weidner T, Ma H, Castner D G et al 2009 Appl. Phys. Lett. 95 073505Google Scholar
  95. 95.
    Park J H, Lee H S, Lee J, Lee K, Lee G, Yoon K H et al 2012 Phys. Chem. Chem. Phys. 14 14202CrossRefGoogle Scholar
  96. 96.
    Fukuda K, Suzuki T, Kobayashi T, Kumaki D and Tokito S 2013 Phys. Status Solidi 210 839CrossRefGoogle Scholar
  97. 97.
    Held M, Schießl S P, Miehler D, Gannott F and Zaumseil J 2015 Appl. Phys. Lett. 107 1CrossRefGoogle Scholar
  98. 98.
    Sun Q J, Zhuang J, Yan Y, Zhou Y, Han S T, Zhou L et al 2016 Phys. Status Solidi. Appl. Mater. Sci. 213 79CrossRefGoogle Scholar
  99. 99.
    Lee W H, Wang C C and Ho J C 2009 Thin Solid Films 517 5305CrossRefGoogle Scholar
  100. 100.
    Kim Y J, Kim J, Kim Y S and Lee J K 2013 Org. Electron. Phys., Mater. Appl. 14 3406Google Scholar
  101. 101.
    Chen F C, Chu C W, He J, Yang Y and Lin J L 2004 Appl. Phys. Lett. 85 3295CrossRefGoogle Scholar
  102. 102.
    Hou X, Ng S C, Zhang J and Chang J S 2015 Org. Electron. 17 247CrossRefGoogle Scholar
  103. 103.
    Kim J H, Hwang B U, Kim D I, Kim J S, Seol Y G, Kim T W et al 2017 Electron. Mater. Lett. 13 214CrossRefGoogle Scholar
  104. 104.
    Faraji S, Hashimoto T, Turner M L and Majewski L A 2015 Org. Electron. Phys., Mater. Appl. 17 178Google Scholar
  105. 105.
    Kim C H, Bae J H, Lee S D and Choi J S 2007 Mol. Cryst. Liq. Cryst. 471 147CrossRefGoogle Scholar
  106. 106.
    Chen F C, Chuang C S, Lin Y S, Kung L J, Chen T H and Shieh H P D 2006 Org. Electron. Phys., Mater. Appl. 7 435Google Scholar
  107. 107.
    Kelley T W, Boardman L D, Dunbar T D, Muyres D V, Pellerite M J and Smith T P 2003 J. Phys. Chem. B 107 5877CrossRefGoogle Scholar
  108. 108.
    McDowell M, Hill I G, McDermott J E, Bernasek S L and Schwartz J 2006 Appl. Phys. Lett. 88 7CrossRefGoogle Scholar
  109. 109.
    Jedaa A, Burkhardt M, Zschieschang U, Klauk H, Habich D, Schmid G et al 2009 Org. Electron. Phys., Mater. Appl. 10 1442Google Scholar
  110. 110.
    Yuan G C, Xu Z, Gong C, Cai Q J and Lu Z S 2009 Appl. Phys. Lett. 94 1Google Scholar
  111. 111.
    Acton O, Ting G G, Shamberger P J, Ohuchi F S, Ma H and Jen A K Y 2010 ACS Appl. Mater. Interfaces 2 511CrossRefGoogle Scholar
  112. 112.
    Kim J, Park C J, Yi G, Choi M and Park S K 2015 Materials 8 6926CrossRefGoogle Scholar
  113. 113.
    Wang W, Shi X, Li X and ZhangY 2016 IEEE Electron Device Lett. 37 1332Google Scholar
  114. 114.
    Shaari S, Naka S and Okada H 2016 J. Photopolym. Sci. Technol. 29 363CrossRefGoogle Scholar
  115. 115.
    Shaari S, Naka S and Okada H 2017 Japaneese J. Appl. Phys. 56 1CrossRefGoogle Scholar
  116. 116.
    Shin W C, Moon H, Yoo S, Li Y and Cho B J 2010 IEEE Electron Device Lett. 31 1308Google Scholar
  117. 117.
    Kim J, Kim J, Ahn B, Hassinen T, Jung Y and Ko S 2015 Curr. Appl. Phys. 15 1238CrossRefGoogle Scholar
  118. 118.
    Yoo S, Kim Y H, Ka J, Kim Y S, Yi M H and Jang K 2015 Org. Electron. 23 213CrossRefGoogle Scholar
  119. 119.
    Shaari S, Naka S and Okada H 2016 Proc. of 23rd international workshop on active-matrix flatpanel displays and devices p 160Google Scholar
  120. 120.
    Lee D, Kim J, Cho H, Su M, Park E, Eung N et al 2017 Thin Solid Films 622 29CrossRefGoogle Scholar
  121. 121.
    Maliakal A, Katz H, Cotts P M, Subramoney S and Mirau P 2005 J. Am. Chem. Soc. 127 14655CrossRefGoogle Scholar
  122. 122.
    Sung J H, Park S J, Park J H, Choi H J and Choi J S 2006 Synth. Met. 156 861CrossRefGoogle Scholar
  123. 123.
    Zirkl M, Haase A, Fian A, Schön H, Sommer C, Jakopic G et al 2007 Adv. Mater. 19 2241CrossRefGoogle Scholar
  124. 124.
    Fian A, Haase A, Stadlober B, Jakopic G, Matsko N B, Grogger W et al 2008 Anal. Bioanal. Chem. 390 1455CrossRefGoogle Scholar
  125. 125.
    Wang J J, Lee W H, Ho J C and Hu T S 2009 J. Mater. Sci. Mater. Electron. 20 355CrossRefGoogle Scholar
  126. 126.
    Park J, Lee J W, Kim D W, Park B J, Choi H J and Choi J S 2009 Thin Solid Films 51 588CrossRefGoogle Scholar
  127. 127.
    Huang L, Jia Z, Kymissis L and O’Brien S 2010 Adv. Funct. Mater. 20 554CrossRefGoogle Scholar
  128. 128.
    Yang F Y, Hsu M Y, Hwang G W and Chang K J 2010 Org. Electron. Phys. Mater. Appl. 11 81Google Scholar
  129. 129.
    Navan R R, Prashanthi K, Shojaei Baghini M and Ramgopal Rao V 2012 Microelectron. Eng. 96 92CrossRefGoogle Scholar
  130. 130.
    Beaulieu M R, Baral J K, Hendricks N R, Tang Y, Brisen A L and Watkins J J 2013 ACS Appl. Mater. Interfaces 5 13096CrossRefGoogle Scholar
  131. 131.
    Yu Y Y, Liu C L, Chen Y C, Chiu Y C and Chen W C 2014 RSC Adv. 4 62132CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBirla Institute of Technology and SciencePilaniIndia

Personalised recommendations