Effect of Nd doping on structural and opto-electronic properties of CdO thin films fabricated by a perfume atomizer spray method

  • M Ravikumar
  • R Chandramohan
  • K Deva Arun Kumar
  • S ValanarasuEmail author
  • V Ganesh
  • Mohd Shkir
  • S Alfaify
  • A Kathalingam


A perfume atomizer-assisted spray pyrolysis method was employed to fabricate undoped and neodymium (Nd)-doped cadmium oxide (CdO) thin films. X-ray diffraction results reveal that all the films are polycrystalline with a cubic structure with a preferential orientation along the (200) direction. Scherrer’s formula was used to calculate the crystallite size of Nd-doped CdO films. Energy dispersive spectroscopy results show that Cd, Nd and O elements are present in Nd-doped CdO thin films. The optical absorption of the doped films is increased along with increasing Nd-doping level. The prepared CdO thin films have a high absorption coefficient in the visible region and the optical band gap is decreased on increasing Nd doping content. The electrical carrier concentration (n) of the deposited films is increased with increasing Nd doping concentration. Photoconductivity studies of a nanostructured Al/Nd–n-CdO/p-Si/Al device showed a non-linear electric characteristics indicating diode-like behaviour. Prepared Nd:CdO films could increase the photo-sensing effect of this n-CdO/p-Si heterostructure. These Nd-doped CdO thin films may open a new avenue for photodiode application in near future.


Nd:CdO spray using perfume atomizer thin films optical and electrical properties 



We would like to express our gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support.


  1. 1.
    Ito N, Sato Y, Song P K, Kaijio A, Inoue K and Shigesato Y 2006 Thin Solid Films 496 99CrossRefGoogle Scholar
  2. 2.
    Lim J T, Jeong C H, Vozny A, Lee J H, Kim M S and Yeom G Y 2007 Surf. Coat. Technol. 201 5358CrossRefGoogle Scholar
  3. 3.
    Navamathavan R, Choi C K and Park S J 2009 J. Alloys Compd. 475 889CrossRefGoogle Scholar
  4. 4.
    Ilican S, Caglar Y, Caglar M, Kundakci M and Ates A 2009 Int. J. Hydrog. Energy 34 5201CrossRefGoogle Scholar
  5. 5.
    Deva Arun Kumar K, Valanarasu S, Jeyadheepan K, Hyun-Seok K and Dhanasekaran V 2018 J. Mater. Sci.: Mater. Electron. 29 3648Google Scholar
  6. 6.
    Deva Arun Kumar K, Ganesh V, Shkir M, Alfalfa S and Valanarasu V 2018 J. Mater. Sci. Mater. Electron. 29 887Google Scholar
  7. 7.
    Cruz J S, Delgado G T, Perez R C, Romero C I Z and Angel O Z 2007 Thin Solid Films 515 5381CrossRefGoogle Scholar
  8. 8.
    Vigil O, Cruz F, Morales-Acevedo A, Contreras-puente G, Vaillant L and Santana G 2001 Mater. Chem. Phys. 68 249CrossRefGoogle Scholar
  9. 9.
    Subramanyam T K, Uthanna S and Naidu B S 1998 Mater. Lett. 35 214CrossRefGoogle Scholar
  10. 10.
    Chu T L and Chu S S 1963 J. Electrochem. Soc. 110 548CrossRefGoogle Scholar
  11. 11.
    Zhao Z, Morel D L and Ferekides C S 2002 Thin Solid Films 413 203CrossRefGoogle Scholar
  12. 12.
    Gutierrez L R L, Romero J J C, Tapia J M P, Calva E B, Flores J C M and Lopez M O 2006 Mater. Lett. 60 3866CrossRefGoogle Scholar
  13. 13.
    Gupta R K, Ghosh K, Patel R, Mishra S R and Kahol P K 2008 Mater. Lett. 62 4103CrossRefGoogle Scholar
  14. 14.
    Yagi I, Hagiwara Y, Murakami K and Kaneko S 1993 J. Mater. Res. 81 481Google Scholar
  15. 15.
    Joseph Edison D, Nirmala W, Deva Arun Kumar K, Valanarasu S, Ganesh V, Shkir M et al 2017 Physica B 523 31CrossRefGoogle Scholar
  16. 16.
    Murakami K, Yagi I and Kaneko S 1996 J. Am. Ceram. Soc. 79 2557CrossRefGoogle Scholar
  17. 17.
    Kaneko S, Yagi I, Kosugi T and Murakami K 1998 in: A P Tomsia and A M Glaeser (eds) Ceramic microstructures (Boston, MA: Springer)Google Scholar
  18. 18.
    Gupta R K, Ghosh K, Patel R and Kahol P K 2011 J. Alloys Compd. 509 4146CrossRefGoogle Scholar
  19. 19.
    Gupta R K, Serbetci Z and Yakuphanoglu F 2012 J. Alloys Compd. 515 96CrossRefGoogle Scholar
  20. 20.
    Deokate R J, Pawar S M, Moholkar A V, Sawant V S, Pawar C A, Bhosale C H et al 2008 Appl. Surf. Sci. 254 2187CrossRefGoogle Scholar
  21. 21.
    Herednis D P and Gauckler L J 2005 J. Electroceram. 14 103CrossRefGoogle Scholar
  22. 22.
    Mariappan R, Ragavendar M and Ponnuswamy V 2011 J. Alloys Compd. 509 7337CrossRefGoogle Scholar
  23. 23.
    Shkir M, Ganesh V, AlFaify S, Yahia I S and Zahran H Y 2018 J. Mater. Sci.: Mater. Electron. 29 6446Google Scholar
  24. 24.
    Valanarasu S, Dhanasekaran V, Karunakaran M, Vijayan T A, Chandramohan R and Maalingam T 2014 J. Mater. Sci.: Mater. Electron. 25 3846Google Scholar
  25. 25.
    Deva Arun Kumar K, Valanarasu S, Tamilnayagam V and Amalraj L 2017 J. Mater. Sci.: Mater. Electron. 28 14209Google Scholar
  26. 26.
    Cusco R, Ibanez J, Domenech-Amador N, Artus L, Zuniga-Perez J and Munoz Sanjose V 2010 J. Appl. Phys. 107 063519CrossRefGoogle Scholar
  27. 27.
    Oliva R, Ibanez J, Artus L, Cusco R, Zuniga-Perez J and Muno Sanjose V 2013 J. Appl. Phys. 113 053514CrossRefGoogle Scholar
  28. 28.
    Sahin B 2013 Sci. World J. 2013 1CrossRefGoogle Scholar
  29. 29.
    Thema F T, Beukes P, Gurib-Fakim A and Maaza M 2015 J. Alloys Compd. 646 1043CrossRefGoogle Scholar
  30. 30.
    Knaepen E, Mullens J, Yperman J and Poucke L C V 1996 Thermochim. Acta 284 213CrossRefGoogle Scholar
  31. 31.
    Thirumoorthi M and Thomas J P 2015 J. Asian Ceram. Soc. 4 39CrossRefGoogle Scholar
  32. 32.
    Shkir M and AlFaify S 2017 Sci. Rep. 7 16091Google Scholar
  33. 33.
    Shkir M, Ganesh V, AlFaify S and Yahia I S 2017 J. Mater. Sci.: Mater. Electron. 28 10573Google Scholar
  34. 34.
    Shkir M, Yahia I S, Ganesh V, Algarni H and AlFaify S 2016 Mater. Lett. 176 135Google Scholar
  35. 35.
    Dakhel A A 2009 J. Alloys Compd. 475 51CrossRefGoogle Scholar
  36. 36.
    Ravikumar M, Ganesh V, Shkir M, Chandramohan R, Deva Arun Kumar K, Valanarasu S et al 2018 J. Mol. Struct. 1160 311Google Scholar
  37. 37.
    Dakhel A A 2009 Sol. Energy 83 934CrossRefGoogle Scholar
  38. 38.
    Kawamura K, Maekawa K, Yanagi H, Hirano M and Hosono H 2003 Thin Solid Films 445 182CrossRefGoogle Scholar
  39. 39.
    Ueda N, Maeda H, Hosono H and Kawazoe H 1998 J. Appl. Phys. 84 6174CrossRefGoogle Scholar
  40. 40.
    Xu Y and Schoonen M A A 2000 Am. Mineral. 85 543CrossRefGoogle Scholar
  41. 41.
    Nese K, Sertap Kavasoglu A and Sener O 2009 J. Phys. Chem. Solids 70 521CrossRefGoogle Scholar
  42. 42.
    Sankarasubramanian K, Soundarrajan P, Sethuraman K, Ramesh Babu R and Ramamurthi K 2014 Superlattices Microstruct. 69 29CrossRefGoogle Scholar
  43. 43.
    Sui Y R, Cao Y, Li X F, Yue Y G, Yao B, Li X Y et al 2015 Ceram. Int. 41 587CrossRefGoogle Scholar
  44. 44.
    Dingle R 1969 Phys. Rev. Lett. 23 579CrossRefGoogle Scholar
  45. 45.
    Dong W and Zhu C 2003 Opt. Mater. 22 227CrossRefGoogle Scholar
  46. 46.
    Jun Kuo T, Micheal Z and Huang H 2006 J. Phys. Chem. B 110 13717Google Scholar
  47. 47.
    Rhoderick E H and Williams R H 1988 Metal-semiconductor contacts 2nd edn (Oxford: Clarendon)Google Scholar
  48. 48.
    Ugurel S A E, Serifoglu K and Turut A 2008 Microelectron. Eng. 85 2299CrossRefGoogle Scholar
  49. 49.
    Chen P, Ma X and Yang D 2007 J. Appl. Phys. 101 053103CrossRefGoogle Scholar
  50. 50.
    Ravikumar M, Chandramohan R, Deva Arun Kumar K and Valanarasu S 2018 J. Sol-Gel Sci. Technol. 85 31Google Scholar
  51. 51.
    Naderi N and Hashim M R 2013 J. Alloys Compd. 552 356CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsArumugam Pillai Seethai Ammal CollegeTiruppatturIndia
  2. 2.Department of PhysicsSree Sevugan Annamalai CollegeDevakottaiIndia
  3. 3.PG and Research Department of PhysicsArul Anandar CollegeKarumathurIndia
  4. 4.Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  5. 5.Millimeter-Wave Innovation Technology Research Center (MINT)Dongguk University-SeoulSeoulRepublic of Korea

Personalised recommendations