Advertisement

Effect of pretreatment processes on physicochemical properties of hydroxyapatite synthesized from Puntius conchonius fish scales

  • Payel DebEmail author
  • Ashish Bhalchandra Deoghare
Article
  • 16 Downloads

Abstract

The current study emphasizes on the novel idea of synthesizing hydroxyapatite (HAp) from Puntius conchonius fish scales’ bio-waste and study the effect of acid, alkali and acid–alkali pretreatments on its physicochemical properties. Material characterization is carried out to study the physicochemical properties of the synthesized HAp using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM) analysis. FTIR and XRD plots show peaks corresponding to natural bone apatite which confirms the formation of HAp. TG analysis shows a maximum weight loss of 2.28% indicating high thermal stability of HAp beyond 800\(^{\circ }\)C. SEM micrographs illustrate highly porous morphology with interconnected pores. EDX analysis of the HAp exhibits close proximity of the calcium/phosphorous (Ca/P) ratio to natural bone apatite. TEM micrographs show the formation of polycrystalline HAp particles with size ranging from \(38\pm 1.54\) to \(219\pm 5.88~\hbox {nm}\). A comparative study on the physicochemical properties of HAp synthesized using three different pretreatment processes is performed. Results reveal that HAp synthesized from acid-treated fish scales show highest yield percentage, better thermal stability and highly porous morphology with a particle size of \(38 \pm 1.54~\hbox {nm}\). Thus, HAp synthesized from acid-treated fish scales can be a promising candidate for the development of porous bone scaffolds.

Keywords

Fish scales bio-waste hydroxyapatite biomaterials advanced characterization 

Notes

Acknowledgements

We acknowledge SAIF IIT Madras for FTIR, XRD and SEM analysis, SAIF NEHU for TEM analysis and Mechanical characterization lab, NIT, Silchar, for thermal characterization of the work.

References

  1. 1.
    Akram M, Ahmed R, Shakir I, Ibrahim W A W and Hussain R 2014 J. Mater. Sci. 49 1461CrossRefGoogle Scholar
  2. 2.
    Boutinguiza M, Pou J, Comesana R, Lusquinos F, De Carlos A and Leon B 2012 Mater. Sci. Eng. C 32 478CrossRefGoogle Scholar
  3. 3.
    Pan Y and Xiong D 2010 J. Mater. Eng. Perform. 19 1037CrossRefGoogle Scholar
  4. 4.
    Seema K, Uma B and Suchita K 2012 J. Mater. Eng. Perform. 21 1737CrossRefGoogle Scholar
  5. 5.
    Younesi M, Javadpour S and Bahrololoom M E 2011 J. Mater. Eng. Perform. 20 1484CrossRefGoogle Scholar
  6. 6.
    Huang Y C and Chu H W 2013 J. Mar. Sci. Technol. 21 716Google Scholar
  7. 7.
    Mahabole M P, Aiyer R C, Ramakrishna C V, Sreedhar B and Khairnar R S 2005 Bull. Mater. Sci. 28 535CrossRefGoogle Scholar
  8. 8.
    Prabakaran K, Balamurugan A and Rajeswari S 2005 Bull. Mater. Sci. 28 115CrossRefGoogle Scholar
  9. 9.
    Krithiga G and Sastry T P 2011 Bull. Mater. Sci. 34 177CrossRefGoogle Scholar
  10. 10.
    Singh A 2012 Bull. Mater. Sci. 35 1031CrossRefGoogle Scholar
  11. 11.
    Kumar T S S, Sivakumar M, Kumar N P, Selvi K S and Rao K P 1995 Bull. Mater. Sci. 18 955CrossRefGoogle Scholar
  12. 12.
    Mondal S, Bardhan R,Mondal B, Dey A, Mukhopadhyay S S, Roy S et al 2012 Bull. Mater. Sci. 35 683CrossRefGoogle Scholar
  13. 13.
    Panda N N, Pramanik K and Sukla L B 2014 Bioprocess. Biosyst. Eng. 37 433CrossRefGoogle Scholar
  14. 14.
    Pon-On W, Suntornsaratoon P, Charoenphandhu N, Thongbunchoo J, Krishnamra N and Tang I M 2016 Mater. Sci. Eng. C 62 183CrossRefGoogle Scholar
  15. 15.
    Rocha J H G, Lemos A F, Agathopoulos S, Valério P, Kannan S, Oktar F N et al 2005 Bone 37 850CrossRefGoogle Scholar
  16. 16.
    Milovac D, Gallego G, Ivankovic M and Ivankovic H 2014 Mater. Sci. Eng. C 34 264CrossRefGoogle Scholar
  17. 17.
    Kim B S, Yang S S and Lee J 2014 J. Biomed. Mater. Res. B 102 943CrossRefGoogle Scholar
  18. 18.
    Wei M and Evans J H 2003 J. Mater. Sci. Mater. Med. 14 311CrossRefGoogle Scholar
  19. 19.
    Zhang Y and Yokogawa Y 2008 J. Mater. Sci. Mater. Med. 19 623CrossRefGoogle Scholar
  20. 20.
    Meejoo S, Maneeprakorn W and Winotai P 2006 Thermochim. Acta 447 115CrossRefGoogle Scholar
  21. 21.
    Mondal S, Pal U and Dey A 2016 Ceram. Int. 42 18338CrossRefGoogle Scholar
  22. 22.
    Mondal S, Mondal B, Dey A and Mukhopadhyay S S 2012 J. Miner. Mater. Charact. Eng. 11 55Google Scholar
  23. 23.
    Gautam C R, Tamuk M, Manpoong C W, Gautam S S, Kumar S, Singh A K et al 2016 J. Mater. Sci. 51 4973CrossRefGoogle Scholar
  24. 24.
    Mondal S, Mahata S, Kundu S and Mondal B 2010 Adv. Appl. Ceram. 109 234CrossRefGoogle Scholar
  25. 25.
    Xu J L, Khor K A, Dong Z L, Gu Y W, Kumar R and Cheang P 2004 Mater. Sci. Eng. A 374 101CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology SilcharSilcharIndia

Personalised recommendations