Advertisement

Bulletin of Materials Science

, 41:162 | Cite as

Recovering value from waste: biomaterials production from marine shell waste

  • S H Saharudin
  • J H Shariffuddin
  • A Ismail
  • J H Mah
Article
  • 18 Downloads

Abstract

Marine shell waste is rich in calcium carbonate \((\hbox {CaCO}_{3})\), which can be a good source for the synthesis of hydroxyapatite (HAP). HAP is a potential component in bone tissue engineering as it possesses similar elements to bone structure. In this study, three different species of marine shells that are normally found in Malaysia, namely short-necked clam (Paphia undulate), blood cockle (Anadara granosa) and hard clam (Meretrix lyrata) were used to produce \(\hbox {CaCO}_{3}\) and HAP. The characterization results indicate that the produced \(\hbox {CaCO}_{3}\) consists of mainly aragonite polymorph. Subsequently, the produced \(\hbox {CaCO}_{3}\) was used as the calcium source for the formation of HAP through the wet slurry precipitation method. The results from the analyses on crystallinity, functional group, surface morphology and elemental analysis of the synthesized HAP powders that were obtained through X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) have confirmed that HAP is comparable with other studies. Overall, the results obtained through this study indicate that it is possible to produce \(\hbox {CaCO}_{3}\) and HAP from various marine-based shell waste through greener synthesis routes with less chemicals and reactiontime.

Keywords

Hydroxyapatite calcium carbonate marine shell wet slurry precipitation method biomaterials 

Notes

Acknowledgements

The authors acknowledge Universiti Malaysia Pahang for the financial support through grant (RDU150394) and the Doctorate Research Scheme (DRS) for Siti Hajar Saharudin.

References

  1. 1.
    Hamli H, Idris M H, Abu Hena M K and Wong S K 2012 Int. J. Zool. Res. 8 52CrossRefGoogle Scholar
  2. 2.
    Yan L, Schöne B R, Li S and Yan Y 2013 J. Oceanogr. 70 35CrossRefGoogle Scholar
  3. 3.
    Boey P L, Maniam G P, Hamid S A and Ali D M H 2011 Fuel 90 2353CrossRefGoogle Scholar
  4. 4.
    Wu X, Xiao S, Li X, Li L, Shi W and Yu Z 2014 Gene 533 439CrossRefGoogle Scholar
  5. 5.
    Zhou X 2015 An overview of recently published global aquaculture statistics (Italy: Food and Agriculture Organization of the United Nations (FAO))Google Scholar
  6. 6.
    Muthusamy K and Sabri N A 2012 Int. J. Sci. Environ. Technol. 1 260Google Scholar
  7. 7.
    Saharudin S H, Shariffuddin J H and Nordin N I A A 2017 IOP Conf. Ser.: Mater. Sci. Eng. 257 012061Google Scholar
  8. 8.
    Jones M I, Wang L Y, Abeynaike A and Patterson D A 2013 Adv. Appl. Ceram. 110 280CrossRefGoogle Scholar
  9. 9.
    Hayes M, Carney B, Slater J and Bruck W 2008 Biotechnol. J. 3 871CrossRefGoogle Scholar
  10. 10.
    Suteu D, Bilba D, Aflori M, Doroftei F, Lisa G, Badeanu M et al 2012 Clean (Weinh) 40 198Google Scholar
  11. 11.
    Fernandez-Gonzalez R, Martinez-Carballo E, Gonzalez-Barreiro C, Rial-Otero R and Simal-Gandara J 2011 Environ. Sci. Pollut. Res. Int. 18 1139CrossRefGoogle Scholar
  12. 12.
    Mohamed M, Yusup S and Maitra S 2012 J. Eng. Sci. Technol. 7 1Google Scholar
  13. 13.
    Barros M C, Bello P M, Bao M and Torrado J J 2009 J. Clean. Prod. 17 400CrossRefGoogle Scholar
  14. 14.
    Nakatani N, Takamori H, Takeda K and Sakugawa H 2009 Bioresour. Technol. 100 1510CrossRefGoogle Scholar
  15. 15.
    Zhang X and Vecchio K S 2013 Front. Mater. Sci. 7 103Google Scholar
  16. 16.
    Shariffuddin J H, Jones M I and Patterson D A 2013 Chem. Eng. Res. Des. 91 1693CrossRefGoogle Scholar
  17. 17.
    Khiri M Z, Matori K A, Zainuddin N, Abdullah C A, Alassan Z N, Baharuddin N F et al 2016 Springerplus 5 1206CrossRefGoogle Scholar
  18. 18.
    Morsy R 2016 Bull. Mater. Sci. 39 1273CrossRefGoogle Scholar
  19. 19.
    Landi E, Celotti G, Logroscino G and Tampieri A 2003 J. Eur. Ceram. Soc. 23 2931CrossRefGoogle Scholar
  20. 20.
    Zakaria S M, Sharif Zein S H, Othman M R, Yang F and Jansen J A 2013 Tissue Eng. Part B Rev. 19 431CrossRefGoogle Scholar
  21. 21.
    Agnieszka S-K, Zbigniew W, Regina K and Zygmunt K 2013 Bull. Mater. Sci. 36 755CrossRefGoogle Scholar
  22. 22.
    Huaqiang C, Lu Z, He Z and Zhao W 2010 J. Phys. Chem. C 114 18352CrossRefGoogle Scholar
  23. 23.
    Sanosh K P, Chu M-C, Balakrishnan A, Kim T N and Cho S-J 2009 Bull. Mater. Sci. 32 465CrossRefGoogle Scholar
  24. 24.
    Kumar B S, Hemalatha T, Deepachitra R, Raghavan R N, Prabu P and Sastry T P 2015 Bull. Mater. Sci. 38 259CrossRefGoogle Scholar
  25. 25.
    Michael F M, Khalid M, Ratnam C T, Rashmi W, Hoque M E and Ketabchi M R 2016 Bull. Mater. Sci. 39 133CrossRefGoogle Scholar
  26. 26.
    Gopi S, Subramanian V K and Palanisamy K 2013 Mater. Res. Bull. 48 1906CrossRefGoogle Scholar
  27. 27.
    Guo F, Li Y, Xu H X, Zhao G Q and He X J 2007 Mater. Lett. 61 4937CrossRefGoogle Scholar
  28. 28.
    Wang C, Zhao J, Zhao X, Bala H and Wang Z 2006 Powder Technol. 163 134CrossRefGoogle Scholar
  29. 29.
    Islam K N, Ali M E, Bakar M Z B A, Loqman M Y, Islam A, Islam M S et al 2013 Powder Technol. 246 434CrossRefGoogle Scholar
  30. 30.
    Islam K N, Bakar M Z B A, Ali M E, Hussein M Z B, Noordin M M, Loqman M Y et al 2013 Powder Technol. 235 70CrossRefGoogle Scholar
  31. 31.
    Natali I, Tempesti P, Carretti E, Potenza M, Sansoni S, Baglioni P et al 2014 Langmuir 30 660Google Scholar
  32. 32.
    Wang C, Liu Y, Bala H, Pan Y, Zhao J, Zhao X et al Colloids Surf. Physicochem. Eng. Aspects 297 179Google Scholar
  33. 33.
    Abanades J C 2002 Chem. Eng. J. 90 303CrossRefGoogle Scholar
  34. 34.
    Stanmore B R and Gilot P 2005 Fuel Process. Technol. 86 1707CrossRefGoogle Scholar
  35. 35.
    Olson I C, Kozdon R, Valley J W and Gilbert P U 2012 J. Am. Chem. Soc. 134 7351CrossRefGoogle Scholar
  36. 36.
    Addadi L, Joester D, Nudelman F and Weiner S 2006 Chem. Eur. J. 12 980CrossRefGoogle Scholar
  37. 37.
    Chateigner D, Hedegaard C and Wenk H R 2000 J. Struct. Geol. 22 1723CrossRefGoogle Scholar
  38. 38.
    Shafiu Kamba A, Ismail M, Tengku Ibrahim T A and Zakaria Z A B 2013 J. Nanomater. 2013 1CrossRefGoogle Scholar
  39. 39.
    Wang P, Li C, Gong H, Jiang X, Wang H and Li K 2010 Powder Technol. 203 315CrossRefGoogle Scholar
  40. 40.
    Al-Qasas N S and Rohani S 2005 Sep. Sci. Technol. 40 3187CrossRefGoogle Scholar
  41. 41.
    Koutsopoulos S 2002 J. Biomed. Mater. Res. 62 600CrossRefGoogle Scholar
  42. 42.
    Manoj M, Subbiah R, Mangalaraj D, Ponpandian N, Viswanathan C and Park K 2015 Nanobiomedicine 2 1Google Scholar
  43. 43.
    Gibson I R and Bonfield W 2002 J. Biomed. Mater. Res. 59 697CrossRefGoogle Scholar
  44. 44.
    Muralithran G and Ramesh S 2000 Ceram. Int. 26 221CrossRefGoogle Scholar
  45. 45.
    Tadic D, Peters F and Epple M 2002 Biomaterials 23 2553CrossRefGoogle Scholar
  46. 46.
    Anwar A, Asghar M N, Kanwal Q, Kazmi M and Sadiqa A 2016 J. Mol. Struct. 1117 283CrossRefGoogle Scholar
  47. 47.
    Mondal S, Mondal B, Dey A and Mukhopadhyay S S 2012 J. Miner. Mater. Charact. Eng. 11 55Google Scholar
  48. 48.
    Rodríguez-Lorenzo L M and Vallet-Regí M 2000 Chem. Mater. 12 2460CrossRefGoogle Scholar
  49. 49.
    Cullity B D 1956 Elements of X-ray diffraction (United States of America: Addison-Wesley Publishing Company)Google Scholar
  50. 50.
    Dey S, Das M and Balla V K 2014 Mater. Sci. Eng. C Mater. Biol. Appl. 39 336CrossRefGoogle Scholar
  51. 51.
    Bogdanoviciene I, Beganskiene A, Tõnsuaadu K, Glaser J, Meyer H J and Kareiva A 2006 Mater. Res. Bull. 41 1754CrossRefGoogle Scholar
  52. 52.
    Abidi S S A and Murtaza Q 2014 J. Mater. Sci. Technol. 30 307CrossRefGoogle Scholar
  53. 53.
    Best S M, Porter A E, Thian E S and Huang J 2008 J. Eur. Ceram. Soc. 28 1319CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Faculty of Chemical and Natural Resources EngineeringUniversiti Malaysia Pahang, Lebuhraya Tun RazakGambang, KuantanMalaysia
  2. 2.Centre of Excellence for Advanced Research in Fluid FlowUniversiti Malaysia Pahang, Lebuhraya Tun RazakGambang, KuantanMalaysia

Personalised recommendations