Advertisement

Bulletin of Materials Science

, 41:161 | Cite as

Microwave-hydrothermal synthesis of mesoporous \(\upgamma \)-\(\hbox {Al}_{2}\hbox {O}_{3}\) and its impregnation with AgNPs for excellent catalytic oxidation of CO

  • Sukanya Kundu
  • Milan Kanti Naskar
Article
  • 8 Downloads

Abstract

Mesoporous \(\upgamma \)-alumina was synthesized by the microwave-hydrothermal process with a shorter duration time at 150\({^{\circ }}\)C/2 h followed by calcination at 550\({^{\circ }}\)C/1 h. Ag nanoparticles (AgNPs) were impregnated into \(\upgamma \)-alumina under a reducing atmosphere at 450\({^{\circ }}\)C. The synthesized product was characterized by X-ray diffraction (XRD), thermogravimetric (TG)/differential thermal analysis (DTA), X-ray photoelectron spectroscopy (XPS), \(\hbox {N}_{2}\) adsorption–desorption study, field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The BET surface area values of \(\upgamma \)-alumina and Ag-impregnated \(\upgamma \)-alumina were found to be 258 and 230 m\(^{2}\) g\(^{-1}\), respectively. FESEM images showed the formation of grain-like particles of 50–70 nm in size with a flake-like microstructure. The XRD, XPS and TEM studies confirmed the presence of Ag in the synthesized product. Catalytic properties of the product for CO oxidation was studied with the \(T_{50}\) (50% conversion) and \(T_{100}\) (100% conversion) values of 118 and 135\({^{\circ }}\)C, respectively; the enhanced values were compared with the literature reported values.

Keywords

Microwave hydrothermal microstructure mesoporous \(\hbox {Al}_{2}\hbox {O}_{3}\) CO oxidation 

Notes

Acknowledgements

The authors would like to thank the Director of CSIR-CGCRI for his kind permission to pursue this work. The author S.K., an AcSIR fellow, is grateful to CSIR, Government of India for her fellowship. The financial support from the Department of Science and Technology under the DST-SERB sponsored project, GAP 0616 (Grant No. SR/S3/ME/0035/2012), Government of India, is gratefully acknowledged.

References

  1. 1.
    Tan H, Ma X and Fu M 2013 Bull. Mater. Sci. 36 153CrossRefGoogle Scholar
  2. 2.
    Yang P, Zhao D, Margolese D I, Chmelka B F and Stucky G D 1998 Nature 396 152CrossRefGoogle Scholar
  3. 3.
    Ghosh S, Dey K P and Naskar M K 2013 J. Am. Ceram. Soc. 96 28CrossRefGoogle Scholar
  4. 4.
    Liu Q, Wang A, Wang X and Zhang T 2006 Chem. Mater. 18 5153CrossRefGoogle Scholar
  5. 5.
    Tok A I Y, Boey F Y C and Zhao X L 2006 Mater. Process. Technol. 178 270CrossRefGoogle Scholar
  6. 6.
    Parida K M, Pradhan A C, Das J and Sahu N 2009 Mater. Chem. Phys. 113 244CrossRefGoogle Scholar
  7. 7.
    Li Y, Peng C, Li L and Rao P 2014 J. Am. Ceram. Soc. 97 35CrossRefGoogle Scholar
  8. 8.
    Edrissi M and Norouzbeigi R 2011 J. Am. Ceram. Soc. 94 4052CrossRefGoogle Scholar
  9. 9.
    Sivadasan A K, Selvam I P and Potty S N 2010 Bull. Mater. Sci. 33 737CrossRefGoogle Scholar
  10. 10.
    Sommer W J and Weck M 2007 Langmuir 23 11991CrossRefGoogle Scholar
  11. 11.
    Jones R A, Strickland J A, Stunkard J A and Siegel J 1971 Toxicol. Appl. Pharmacol. 19 46CrossRefGoogle Scholar
  12. 12.
    Kou T, Lib D, Zhanga C, Zhanga Z and Yanga H 2014 J. Mol. Catal. A: Chem. 382 55CrossRefGoogle Scholar
  13. 13.
    Townsend C L and Maynard R I 2002 Occup. Environ. Med. 59 708CrossRefGoogle Scholar
  14. 14.
    Paldey S, Gedevanishvili S, Zhang W and Rasouli F 2005 Appl. Catal. B 56 241CrossRefGoogle Scholar
  15. 15.
    Li Z X, Shi F B, Li L L, Zhang T and Yan C H 2011 Phys. Chem. Chem. Phys. 13 2488CrossRefGoogle Scholar
  16. 16.
    Pillai U R and Deevi S 2006 Appl. Catal. B 64 146CrossRefGoogle Scholar
  17. 17.
    Bose P, Ghosh S, Basak S and Naskar M K 2016 J. Asian Ceram. Soc. 4 1CrossRefGoogle Scholar
  18. 18.
    Chen J L, Li J, Li H J, Huang X M and Shen W J 2008 Microporous Mesoporous Mater. 116 586CrossRefGoogle Scholar
  19. 19.
    Tian D, Yong G P, Dai Y, Yan X Y and Liu S M 2009 Catal. Lett. 130 211CrossRefGoogle Scholar
  20. 20.
    Frey K, Iablokov V, Melaet G, Guczi L and Kruse N 2008 Catal. Lett.  124 74CrossRefGoogle Scholar
  21. 21.
    Yu L B, Shi Y Y, Zhao Z, Yin H B, Wei Y C, Liu J et al 2011 Catal. Commun. 12 616CrossRefGoogle Scholar
  22. 22.
    Chowdhury I H, Ghosh S, Basak S and Naskar M K 2017 J. Phys. Chem. Solids 104 103CrossRefGoogle Scholar
  23. 23.
    Wagner C D, Riggs W M, Davis L E, Moulder J F and Muilen-berg G E 1979 In Handbook of X-ray Photoelectron Spectroscopy (eds) Muilen-berg G E (Eden Prairie, MN: Perkin Elmer Corporation)Google Scholar
  24. 24.
    Chowdhury I H, Ghosh S and Naskar M K 2016 Ceram. Int. 42 2488CrossRefGoogle Scholar
  25. 25.
    Mishra D, Annad S, Panda R K and Das R P 2002 Mater. Lett. 53 133CrossRefGoogle Scholar
  26. 26.
    Naskar M K 2009 J. Am. Ceram. Soc. 92 2392CrossRefGoogle Scholar
  27. 27.
    Abdalsayed V, Aljarash A, El-Shall M S, Othman Z A A and Alghamdi A H 2009 Chem. Mater. 21 2825CrossRefGoogle Scholar
  28. 28.
    Zhang X D, Qu Z P, Li X Y, Wen M, Quan X, Ma D et al 2010 Sep. Purif. Technol. 72 395CrossRefGoogle Scholar
  29. 29.
    Ji L, Lin J and Zeng H C 2000 J. Phys. Chem. B 104 1783CrossRefGoogle Scholar
  30. 30.
    Rattan G and Kumar M 2014 Chem. Chem. Technol. 8 249CrossRefGoogle Scholar
  31. 31.
    Grunwaldt J D, Kiener C, Wogerbauer C and Baiker A 1999 J. Catal. 181 223CrossRefGoogle Scholar
  32. 32.
    Wang W H and Cao G Y 2006 Chin. J. Chem. 24 817CrossRefGoogle Scholar
  33. 33.
    Kolodziejczyk M, Colen R E R, Berdau M, Delmon B and Block J H 1997 Surf. Sci. 375 235CrossRefGoogle Scholar
  34. 34.
    Royer S and Duprez D 2011ChemCatChem 3 24CrossRefGoogle Scholar
  35. 35.
    Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 J. Catal. 224 206CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Sol–Gel DivisionCSIR-Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations