Advertisement

Bulletin of Materials Science

, 41:165 | Cite as

Optimization of the liquid–liquid interfacial precipitation method for the synthesis of \(\hbox {C}_{60}\) nanotubes

  • Dorra Mahdaoui
  • Chika Hirata
  • Nabil Omri
  • Takatsugu Wakahara
  • Manef Abderrabba
  • Kun’ichi Miyazawa
Article
  • 2 Downloads

Abstract

Tubular fullerene nanowhiskers called ‘fullerene nanotubes’ are composed of \(\hbox {C}_{60}\) fullerene molecules (\(\hbox {C}_{60}\) NTs) are synthesized at room temperature using the liquid–liquid interfacial precipitation method in the pyridine and isopropyl alcohol (IPA) system. The growth control of fullerene nanotubes is important for their chemical and physical properties as well as for their future applications. In the present study, we investigated the effect of light, water, solvent ratio and temperature on the synthesis of \(\hbox {C}_{60}\) nanotubes. A marked development in the yield of \(\hbox {C}_{60}\) NTs was achieved using dehydrated solvents, a solution with a volume ratio of 1:9 for pyridine: IPA, a growth temperature equal to \(5{^{\circ }}\hbox {C}\) and by illuminating the \(\hbox {C}_{60}\)-pyridine solution with ultraviolet light (wavelength 302 nm) for 102 h. The synthesized fullerene nanotubes were characterized by different analytical techniques including Raman and Fourier transform infrared spectroscopy, optical microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy.

Keywords

Fullerene nanotubes liquid–liquid interfacial precipitation method solution growth solvent temperature light 

Notes

Acknowledgements

Part of this research was supported by Japan Society for the Promotion of Science JSPS KAKENHI (grant number 26600007). TEM analysis of this work was conducted at Advanced Characterization Nanotechnology Platform of Tokyo University, supported by ‘Nanotechnology platform’ of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

  1. 1.
    Miyazawa K, Obayashi A and Kuwabara M 2001 J. Am. Ceram. Soc. 84 3037CrossRefGoogle Scholar
  2. 2.
    Liu H, Li Y, Jiang L, Luo H, Xiao S, Fang H et al 2002 J. Am. Chem. Soc. 124 13370CrossRefGoogle Scholar
  3. 3.
    Miyazawa K, Kuwasaki Y, Obayashi A and Kuwabara M 2002 J. Mater. Res17 83CrossRefGoogle Scholar
  4. 4.
    Miyazawa K and Suga T 2004 J. Mater. Res. 19 3145CrossRefGoogle Scholar
  5. 5.
    Miyazawa K, Minato J, Yoshii T, Fujino M and Suga T 2005 J. Mater. Res. 20 688CrossRefGoogle Scholar
  6. 6.
    Miyazawa K, Mashino T and Suga T 2003 J. Mater. Res. 18 2730CrossRefGoogle Scholar
  7. 7.
    Miyazawa K, Minato J, Mashino T, Nakamura S, Fujino M and Suga T 2006 Nukleonika 51 S41Google Scholar
  8. 8.
    Miyazawa K and Suga T 2004 J. Mater. Res. 19 2410CrossRefGoogle Scholar
  9. 9.
    Zhang X, Jiao K, Piao G, Liu S and Li S 2009 Synth. Met. 159 419CrossRefGoogle Scholar
  10. 10.
    Ringor C L and Miyazawa K 2008 Diamond Relat. Mater. 17 529CrossRefGoogle Scholar
  11. 11.
    Kizuka T, Saito K and Miyazawa K 2008 Diamond Relat. Mater. 17 972CrossRefGoogle Scholar
  12. 12.
    Miyazawa K 2009 J. Nanosci. Nanotechnol. 9 41CrossRefGoogle Scholar
  13. 13.
    Miyazawa K and Ringor C 2008 Mater. Lett. 62 410CrossRefGoogle Scholar
  14. 14.
    Wang B L, Liu B, Liu D, Yao M, Hou Y, Yu S et al 2006 Adv. Mater. 18 1883CrossRefGoogle Scholar
  15. 15.
    Ji H X, Hu J S, Tang Q X, Song W G, Wang C R, Hu W P et al 2007 J. Phys. Chem. C 111 10498CrossRefGoogle Scholar
  16. 16.
    Minato J, Miyazawa K and Suga T 2005 Sci. Technol. Adv. Mater. 6 272CrossRefGoogle Scholar
  17. 17.
    Rauwerdink K, Liu J F, Kintigh J and Miller G P 2007 Microsc. Res. Tech. 70 513CrossRefGoogle Scholar
  18. 18.
    Miyazawa K and Hotta K 2010 J. Cryst. Growth 312 2764CrossRefGoogle Scholar
  19. 19.
    Miyazawa K, Kuriyama R, Shimomura S, Wakahara T and Tachibana M 2014 J. Cryst. Growth 388 5CrossRefGoogle Scholar
  20. 20.
    Heymann D 1996 Carbon NY 34 627CrossRefGoogle Scholar
  21. 21.
    Ruoff R S, Tse D S, Malhotra R and Lorents D C 1993 J. Phys. Chem. 97 3379CrossRefGoogle Scholar
  22. 22.
    Nath S, Pal H, Palit D K, Sapre A V and Mittal J P 1998 J. Phys. Chem. B 102 10158CrossRefGoogle Scholar
  23. 23.
    Bokare A D and Patnaik A 2005 J. Phys. Chem. B 109 87CrossRefGoogle Scholar
  24. 24.
    Qu Y, Yu W, Niu N, Liang S, Li G and Piao G 2012 Condens. Matter Phys.  https://doi.org/10.5402/2012/140842
  25. 25.
    Kruegert G C and Miller C W 1953 J. Chem. Phys21 2018CrossRefGoogle Scholar
  26. 26.
    Andrievsky G V, Klochkov V K, Bordyuh A B and Dovbeshko G I 2002 Chem. Phys. Lett. 364 8Google Scholar
  27. 27.
    Mahdaoui D, Abderrabba M, Hirata C, Wakahara T and Miyazawa K 2016 J. Sol. Chem.  https://doi.org/10.1007/s10953-016-0497-3
  28. 28.
    Guo J H, Luo Y, Augustsson A, Kashtanov S, Rubensson J E, Shuh D K et al 2003 Phys. Rev. Lett.  https://doi.org/10.1103/91.157401
  29. 29.
    Miyazawa K and Hotta K 2011 J. Nanopart. Res.  https://doi.org/10.1007/s11051-010-0132-y
  30. 30.
    Nath S, Pal H, Sapre A V and Mittal J P 2003 J. Photosci10 105Google Scholar
  31. 31.
    Imahori H, Hagiwara K, Akiyama T, Taniguchi S, Okada T and Sakata Y 1995 Chem. Lett. 265Google Scholar
  32. 32.
    Kuciauskas D, Lin S, Seely G R, Moore A L, Moore T A, Gust D et al 1996 J. Phys. Chem. 100 15926CrossRefGoogle Scholar
  33. 33.
    Cheng J, Fang Y, Huang Q, Yan Y J and Li X Y 2000 Chem. Phys. Lett330 262CrossRefGoogle Scholar
  34. 34.
    Mrzel A, Mertelj A, Omerzu A, Copic M and Mihailovic D 1999 J. Phys. Chem. B 103 11256CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical StudiesUniversity of CarthageLa Marsa, TunisTunisia
  2. 2.National Institute for Materials Science (NIMS)TsukubaJapan
  3. 3.Department of Chemical Sciences and Technology, Graduate School of Chemical Sciences and TechnologyTokyo University of ScienceTokyoJapan

Personalised recommendations