Advertisement

Bulletin of Materials Science

, 41:151 | Cite as

Highly enhanced solar conversion efficiency of novel layer-by-layer PbS:Hg and CdS quantum dots-sensitized ZnO thin films prepared by sol–gel spin coating

  • MANGESH LANJEWAR
  • JIGNASA V GOHEL
Article
  • 7 Downloads

Abstract

Owing to superior optical properties, ZnO thin films have immense potential in solar cell preparation. ZnO thin films were prepared by sol–gel technology. However, this is prolonged technique and it necessitates a complex precursor solution. In the present work, ZnO thin films are prepared by sol–gel spin coating with simple precursor, zinc acetate. A very remarkable feature of the method is that polycrystalline, non-abrasive and translucent films were obtained. Additionally, novel PbS:Hg quantum dots (QDs) and CdS QDs are successfully synthesized. Moreover, both types of QDs are deposited layer-by-layer over pure ZnO and Ag:ZnO thin films. The films are characterized by X-ray diffraction, and crystallinity continuation is observed even after the addition of QDs layer. Presence of synthesized QDs over thin films is also confirmed. The films were also characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. Uniform, dense and porous surface morphology is clearly revealed. Sensitized thin films show a huge decline in band gap and large enhancement in efficiency. Superior current density (\(10.87~\hbox {mA}~\hbox {cm}^{-2})\) is achieved with PbS:Hg/CdS/Ag:ZnO, which leads to enhancement in overall solar conversion efficiency by 6.34 times.

Keywords

Ag:ZnO film PbS:Hg quantum dots CdS quantum dots sol–gel 

Notes

Acknowledgements

We would like to thank Chemical Engineering Department, S.V. National Institute, for providing facilities to carry out experimental work and sophisticated analytical instrument facility, S.V. National Institute of Technology, for rendering analytical service for this work.

References

  1. 1.
    Choi H, Nahm C, Kim J, Kim C, Kang S, Hwang T et al 2013 Curr. Appl. Phys. 13 2CrossRefGoogle Scholar
  2. 2.
    Hu Y, Wang B, Zhang J, Wang T, Liu R, Zhang J et al 2013 Nanoscale Res. Lett. 8 1CrossRefGoogle Scholar
  3. 3.
    Li Y, Yu H, Song W, Li G, Yi B and Shao Z 2011 Int. J. Hydrog. Energy 36 14374CrossRefGoogle Scholar
  4. 4.
    Gupta M, Sharma V, Shrivastava J, Solanki A, Singh A P, Satsangi V R et al 2009 Mater. Sci. B 32 23CrossRefGoogle Scholar
  5. 5.
    Zhang X, Lu X, Shen Y, Han J, Yuan L, Gong L et al 2011 Chem. Commun. 47 5804CrossRefGoogle Scholar
  6. 6.
    Shejale K P, Laishram D, Gupta R and Sharma R K 2017 Energy Tech. 5 489CrossRefGoogle Scholar
  7. 7.
    Laishram D, Shejale K P, Sharma R K and Gupta R 2016 RSC Adv. 6 78768CrossRefGoogle Scholar
  8. 8.
    Ma J, Fu W, Yang H, Cheng S, Zhang L, Zhou X et al 2013 Thin Solid Films 545 296CrossRefGoogle Scholar
  9. 9.
    Lee Y L, Huang B M and Chien H T 2008 Chem. Mater. 20 6903CrossRefGoogle Scholar
  10. 10.
    Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A et al 2011 J. Am. Chem. Soc. 133 8458CrossRefGoogle Scholar
  11. 11.
    Chen H M, Chen C K, Chang Y C, Tsai C W, Liu R S, Hu S F et al 2010 Angew. Chem. 122 6102CrossRefGoogle Scholar
  12. 12.
    Zhou Z, Yuan S, Fan J, Hou Z, Zhou W, Du Z et al 2012 Nanoscale Res. Lett. 7 1CrossRefGoogle Scholar
  13. 13.
    Yu W W, Qu L, Guo W and Peng X 2003 Chem. Mater. 15 28540Google Scholar
  14. 14.
    Chou C Y, Li C T, Lee C P, Lin L Y, Yeh M H, Vittal R et al 2013 Electrochim. Acta 88 35CrossRefGoogle Scholar
  15. 15.
    Nozik A J 2008 Chem. Phys. Lett. 457 3CrossRefGoogle Scholar
  16. 16.
    Lee J W, Hong J D and Park N G 2013 Chem. Commun. 49 6448CrossRefGoogle Scholar
  17. 17.
    Senthil K, Tak Y, Seol M and Yong K 2009 Nanoscale Res. Lett. 4 1329CrossRefGoogle Scholar
  18. 18.
    Abd-Elkader O H and Deraz N M 2014 Int. J. Mol. Sci. 15 1842CrossRefGoogle Scholar
  19. 19.
    Lee W, Min S K, Dhas V, Ogale S B and Han S H 2009 Electrochem. Commun. 11 103CrossRefGoogle Scholar
  20. 20.
    Niesen T P and De Guire M R 2001 J. Electroceram. 6 169CrossRefGoogle Scholar
  21. 21.
    Khan W, Khan Z A, Saad A A, Shervani S, Saleem A and Naqvi A H 2013 Int. J. Mod. Phys. 22 630CrossRefGoogle Scholar
  22. 22.
    Mondal S, Kanta K P and Mitra P 2008 J. Phys. Sci. 12 221Google Scholar
  23. 23.
    Ilican S, Caglar Y, Caglar M and Demirci B 2008 J. Optoelectron Adv. Mater. 10 2592Google Scholar
  24. 24.
    Thambidurai M, Muthukumarasamy N, Velauthapillai D, Lee C and Kim J Y 2012 J. Sol–Gel Sci. Tech. 64 750CrossRefGoogle Scholar
  25. 25.
    Mali S S, Desai S K, Kalagi S S, Betty C A, Bhosale P N, Devan R S et al 2012 Dalton Trans. 41 6130CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations