Bulletin of Materials Science

, 41:141 | Cite as

Viscoelasticity, mechanical properties, and in vitro biodegradation of injectable chitosan-poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/nanohydroxyapatite composite hydrogel

  • Ahmed Abd El-FattahEmail author
  • Aya Mansour


A novel injectable composite hydrogel based on chitosan and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with nanohydroxyapatite particles was synthesized. The chemical structure and morphology of the composite hydrogel were characterized. The composite hydrogel porosity, swelling, mechanical properties, viscoelasticity and in vitro biodegradation were also examined. Compared with the non-reinforced hydrogel, the composite hydrogel showed increased compressive strength, elastic modulus, viscous modulus, stiffness and had shear-thinning behaviour proving the injectability of the system. Swelling and biodegradation studies revealed that the composite scaffold possesses proper hydrophilicity and biodegradability. These properties make this composite hydrogel a promising injectable scaffold for bone regeneration.


Injectable hydrogel chitosan poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanohydroxyapatite viscoelasticity bone regeneration 



We acknowledge Sherif Kandil and Labiba El-Khordagui at Alexandria University, Egypt as well as El-Refaie Kenawy at Tanta University, Egypt, for their scientific guidance and moral support throughout the work.


  1. 1.
    Kumar A, Negi Y S, Choudhary V, Bhardwaj N K and Han S S 2017 Int. J. Polym. Anal. Charact. 22 139CrossRefGoogle Scholar
  2. 2.
    Chamundeeswari M, Kumar B S, Muthukumar T, Muthuraman L, Sai K P and Sastry T P 2013 Bull. Mater. Sci. 36 1165CrossRefGoogle Scholar
  3. 3.
    Li X, Wang L, Fan Y, Feng Q, Cui F Z and Watari F 2013 J. Biomed. Mater. Res. A 101 2424CrossRefGoogle Scholar
  4. 4.
    Ding Z, Han H, Fan Z, Lu H, Sang Y, Yao Y et al 2017 ACS Appl. Mater. Interfaces 9 16913CrossRefGoogle Scholar
  5. 5.
    Salgado A J, Coutinho O P and Reis R L 2004 Macromol. Biosci. 4 743CrossRefGoogle Scholar
  6. 6.
    Seyednejad H, Gawlitta D, Dhert W J, Van Nostrum C F, Vermonden T and Hennink W E 2011 Acta Biomater. 7 1999CrossRefGoogle Scholar
  7. 7.
    Hassan M N, Mahmoud M M, El-Fattah A A and Kandil S 2016 Ceram. Int. 42 3725CrossRefGoogle Scholar
  8. 8.
    Sivashanmugam A, Kumar R A, Priya M V, Nair S V and Jayakumar R 2015 Eur. Polym. J. 72 543CrossRefGoogle Scholar
  9. 9.
    Neffe A T, Loebus A, Zaupa A, Stoetzel C, Müller F A and Lendlein A 2011 Acta Biomater. 7 1693CrossRefGoogle Scholar
  10. 10.
    Seeherman H and Wozney J M 2005 Cytokine Growth Factor Rev. 16 329CrossRefGoogle Scholar
  11. 11.
    Slaughter B V, Khurshid S S, Fisher O Z, Khademhosseini A and Peppas N A 2009 Adv. Mater. 21 3307CrossRefGoogle Scholar
  12. 12.
    Lo C M, Wang H B, Dembo M and Wang Y L 2000 Biophys. J. 79 144CrossRefGoogle Scholar
  13. 13.
    Zhou H Y, Jiang L J, Cao P P, Li J B and Chen X G 2015 Carbohydr. Polym. 117 524CrossRefGoogle Scholar
  14. 14.
    Nawrotek K, Tylman M, Rudnicka K, Balcerzak J and Kamiński K 2016 Carbohydr. Polym. 136 764CrossRefGoogle Scholar
  15. 15.
    Karbasi S and Alizadeh Z M 2017 Bull. Mater. Sci. 40 1247CrossRefGoogle Scholar
  16. 16.
    Wang Q and Chen D 2016 Carbohydr. Polym. 136 1228CrossRefGoogle Scholar
  17. 17.
    Liu B, Yao Y, Su J and Xiao J 2015 Mater. Today Proc. 2 295CrossRefGoogle Scholar
  18. 18.
    Kumar B S, Hemalatha T, Deepachitra R, Raghavan R N, Prabu P and Sastry T P 2015 Bull. Mater. Sci. 38 259CrossRefGoogle Scholar
  19. 19.
    Bakan F, Laçin O and Sarac H 2013 Powder Technol. 233 295CrossRefGoogle Scholar
  20. 20.
    Fu S, Guo G, Gong C, Zeng S, Liang H, Luo F et al 2009 J. Phys. Chem. B 113 16518CrossRefGoogle Scholar
  21. 21.
    Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U and Intasanta V 2016 Carbohydr. Polym. 144 419CrossRefGoogle Scholar
  22. 22.
    Dhivya S, Saravanan S, Sastry T P and Selvamurugan N 2015 J. Nanobiotechnol. 13 1CrossRefGoogle Scholar
  23. 23.
    Liu X, Chen Y, Huang Q, He W, Feng Q and Yu B 2014 Carbohydr. Polym. 110 62CrossRefGoogle Scholar
  24. 24.
    Sharma C, Dinda A K, Potdar P D, Chou C F and Mishra N C 2016 Mater. Sci. Eng. C Mater. Biol. Appl. 64 416CrossRefGoogle Scholar
  25. 25.
    Cai X, Tong H, Shen X, Chen W, Yan J and Hu J 2009 Acta Biomater. 5 2693CrossRefGoogle Scholar
  26. 26.
    Sankar D, Chennazhi K P, Nair S V and Jayakumar R 2012 Carbohydr. Polym. 90 725CrossRefGoogle Scholar
  27. 27.
    Shishatskaya E I, Volova T G, Puzyr A P, Mogilnaya O A and Efremov S N 2004 J. Mater. Sci. Mater. Med. 15 719CrossRefGoogle Scholar
  28. 28.
    Nair M B, Baranwal G, Vijayan P, Keyan K S and Jayakumar R 2015 Colloids Surf. B Biointerfaces 136 84CrossRefGoogle Scholar
  29. 29.
    Peter M, Binulal N S, Soumya S, Nair S V, Furuike T, Tamura H et al 2010 Carbohydr. Polym. 79 284CrossRefGoogle Scholar
  30. 30.
    Devine D M and Higginbotham C L 2005 Eur. Polym. J. 41 1272CrossRefGoogle Scholar
  31. 31.
    Zhong X, Ji C, Chan A K, Kazarian S G, Ruys A and Dehghani F 2011 J. Mater. Sci. Mater. Med. 22 279CrossRefGoogle Scholar
  32. 32.
    Kumar P S, Srinivasan S, Lakshmanan V K, Tamura H, Nair S V and Jayakumar R 2011 Carbohydr. Polym. 85 584CrossRefGoogle Scholar
  33. 33.
    Thorpe A, Creasey S, Sammon C and Le Maitre C 2016 Eur. Cells Mater. 32 1CrossRefGoogle Scholar
  34. 34.
    Hassan M N, Mahmoud M M, El-Fattah A A and Kandil S 2015 J. Sol–Gel Sci. Technol. 76 74CrossRefGoogle Scholar
  35. 35.
    Varma H K and Babu S S 2005 Ceram. Int. 31 109CrossRefGoogle Scholar
  36. 36.
    Ślósarczyk A, Paszkiewicz Z and Paluszkiewicz C 2005 J. Mol. Struct. 744 657CrossRefGoogle Scholar
  37. 37.
    Murugan R and Ramakrishna S 2005 Compos. Sci. Technol. 65 2385CrossRefGoogle Scholar
  38. 38.
    Murthy B S, Ramanathan G and Sivagnanam U T 2017 Bull. Mater. Sci. 40 645CrossRefGoogle Scholar
  39. 39.
    Sukhodub L B, Yanovska G O, Kuznetsov V M, Martynyuk O O and Sukhodub L F 2016 J. Nano-Electron. Phys. 8 1032CrossRefGoogle Scholar
  40. 40.
    Roberts J J, Earnshaw A, Ferguson V L and Bryant S J 2011 J. Biomed. Mater. Res. Part B: Appl. Biomater. 99 158CrossRefGoogle Scholar
  41. 41.
    Killion J A, Kehoe S, Geever L M, Devine D M, Sheehan E, Boyd D et al 2013 Mater. Sci. Eng. C Mater. Biol. Appl. 33 4203CrossRefGoogle Scholar
  42. 42.
    Sarker A, Amirian J, Min Y K and Lee B T 2015 Int. J. Biol. Macromol. 81 898CrossRefGoogle Scholar
  43. 43.
    Gantar A, Drnovšek N, Casuso P, Pérez-San Vicente A, Rodriguez J, Dupin D et al 2016 RSC Adv. 6 69166CrossRefGoogle Scholar
  44. 44.
    Gaharwar A K, Rivera C P, Wu C J and Schmidt G 2011 Acta Biomater. 7 4139CrossRefGoogle Scholar
  45. 45.
    Iatridis J C, Setton L A, Weidenbaum M and Mow V C 1997 J. Biomech. 30 1005CrossRefGoogle Scholar
  46. 46.
    Bader R A 2008 Acta Biomater. 4 967CrossRefGoogle Scholar
  47. 47.
    Arun Kumar R, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi K P, Nair S V et al 2015 ACS Appl. Mater. Interfaces 7 9399CrossRefGoogle Scholar
  48. 48.
    Kumar P S, Srinivasan S, Lakshmanan V K, Tamura H, Nair S V and Jayakumar R 2011 Int. J. Biol. Macromol. 49 20CrossRefGoogle Scholar
  49. 49.
    Peter M, Binulal N S, Nair S V, Selvamurugan N, Tamura H and Jayakumar R 2010 Chem. Eng. J. 158 353CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Materials Science, Institute of Graduate Studies and ResearchAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Chemistry, College of ScienceUniversity of BahrainSakhirKingdom of Bahrain

Personalised recommendations