Advertisement

Bulletin of Materials Science

, 41:152 | Cite as

Sn-adopted fullerene \((\hbox {C}_{60})\) nanocage as acceptable catalyst for silicon monoxide oxidation

  • Razieh Razavi
  • Seyyed Milad Abrishamifar
  • Mohammad Reza Rezaei Kahkha
  • Arash Vojood
  • Meysam Najafi
Article

Abstract

In recent years, the discovery of metal catalysts for the oxidation of silicon monoxide (SiO) has become extremely important. In first step, the Sn adoption of fullerene (\(\hbox {C}_{60})\) was investigated and then activation of surface of \(\hbox {Sn-C}_{60}\) via \(\hbox {O}_{2}\) molecule was examined. In second step, the SiO oxidation on surface of \(\hbox {Sn-C}_{60}\) via Langmuir Hinshelwood (LH) and Eley Rideal (ER) mechanisms was investigated. Results show that \(\hbox {O}_{2}\hbox {-Sn-C}_{60}\) can oxidize the SiO molecule via \(\hbox {Sn-C}_{60}\hbox {-O-O}^{*} + \hbox {SiO}\rightarrow \hbox {Sn-C}_{60}\hbox {-O-O}^{*}\hbox {-SiO} \rightarrow \hbox {Sn-C}_{60}\hbox {-O}^{*} + \hbox {SiO}_{2}\) and \(\hbox {Sn-C}_{60}\hbox {-O}^{*} + \hbox {SiO}\rightarrow \hbox {Sn-C}_{60} + \hbox {SiO}_{2}\) reactions. Results show that SiO oxidation via the LH mechanism has lower energy barrier than ER mechanism. Finally, \(\hbox {Sn-C}_{60}\) is an acceptable catalyst with high performance for SiO oxidation in normal temperature.

Keywords

Catalyst nanostructure metal adoption oxidation reaction adsorption energy 

Notes

Acknowledgements

We would like to thank all chemistry teachers for scientific supports.

References

  1. 1.
    Fu Q, Gu X K, Chen L, Wang Z and Zhang H 2010 Science 328 1141CrossRefGoogle Scholar
  2. 2.
    Royer S and Duprez D 2011 Chem. Cat. Chem. 3 24Google Scholar
  3. 3.
    Afshar A, Salami Hosseini M and Behzadfar E 2014 Sci. Iran Trans. C 21 2107Google Scholar
  4. 4.
    Hendriksen B and Frenken J 2002 Phys. Rev. Lett. 89 046101CrossRefGoogle Scholar
  5. 5.
    Eichler A 2002 Surf. Sci. 498 314CrossRefGoogle Scholar
  6. 6.
    Lopez N and Janssens T 2002 J. Catal. 223 232CrossRefGoogle Scholar
  7. 7.
    Kiani A, Haratipour P, Ahmadi M, Zare-Dorabei R and Mahmoodi A 2017 J. Water Suppl. Res. Technol. 66 239CrossRefGoogle Scholar
  8. 8.
    Johnson R S, De La Riva A and Ashbacher V 2013 Phys. Chem. Chem. Phys. 15 7768CrossRefGoogle Scholar
  9. 9.
    Su H Y, Yang M M, Bao X and Li W X 2008 J. Phys. Chem. C 112 17303CrossRefGoogle Scholar
  10. 10.
    Parsaee Z, Haratipour P, Janghorban Lariche M and Vojood A 2018 Ultrason. Sonochem. 41 337CrossRefGoogle Scholar
  11. 11.
    Piccinin S and Stamatakis M 2014 ACS Catal. 4 2143CrossRefGoogle Scholar
  12. 12.
    Liu W, Zhu Y, Lian J and Jiang Q 2007 J. Phys. Chem. C 111 1005CrossRefGoogle Scholar
  13. 13.
    Liu D J 2007 J. Phys. Chem. C 111 14698CrossRefGoogle Scholar
  14. 14.
    Wallace W T and Whetten R L 2002 J. Am. Chem. Soc. 124 7499CrossRefGoogle Scholar
  15. 15.
    Baghban A, Sasanipour J, Haratipour P, Alizad M and Vafaee Ayouri M 2017 Chem. Eng. Res. Des. 126 67CrossRefGoogle Scholar
  16. 16.
    Du J, Wu G and Wan J 2010 J. Phys. Chem. A 114 10508CrossRefGoogle Scholar
  17. 17.
    Najafi M, Najafi M and Najafi H 2013 J. Theor. Comput. Chem. 12 1250116CrossRefGoogle Scholar
  18. 18.
    Gong X Q, Liu Z P, Raval R and Hu P 2004 J. Am. Chem. Soc. 126 8CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201CrossRefGoogle Scholar
  20. 20.
    Kan E, Li Z and Yang J 2008 Nano 3 433CrossRefGoogle Scholar
  21. 21.
    Ci L, Xu Z, Wang L, Gao W and Ding F 2008 Nano Res. 1 116CrossRefGoogle Scholar
  22. 22.
    Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385CrossRefGoogle Scholar
  23. 23.
    Novoselov K S, Geim A K and Morozov S 2004 Science 306 666CrossRefGoogle Scholar
  24. 24.
    Geim A K and Novoselov K S 2007 Nat. Mater. 6 183CrossRefGoogle Scholar
  25. 25.
    Morozov S, Novoselov K and Katsnelson M 2008 Phys. Rev. Lett. 100 016602CrossRefGoogle Scholar
  26. 26.
    Geim A K 2009 Science 324 1530CrossRefGoogle Scholar
  27. 27.
    Ratinac K R, Yang W, Ringer S P and Braet F 2010 Environ. Sci. Technol. 44 1167CrossRefGoogle Scholar
  28. 28.
    Hornes A and Hungria A B 2010 J. Am. Chem. Soc. 132 34CrossRefGoogle Scholar
  29. 29.
    Hu X, Wu Y and Zhang Z 2012 J. Mater. Chem. 22 15198CrossRefGoogle Scholar
  30. 30.
    Tang Y, Dai X, Yang Z, Liu Z, Pan L, Ma D et al 2014 Carbon 71 139CrossRefGoogle Scholar
  31. 31.
    Li Y, Zhou Z, Yu G, Chen W and Chen Z 2010 J. Phys. Chem. C 114 6250CrossRefGoogle Scholar
  32. 32.
    Song E H, Wen Z and Jiang Q 2011 J. Phys. Chem. C 115 3678CrossRefGoogle Scholar
  33. 33.
    Tang Y, Yang Z and Dai X 2012 Phys. Chem. Chem. Phys. 14 16566CrossRefGoogle Scholar
  34. 34.
    Tang Y, Liu Z, Dai X, Yang Z, Chen W and Lu Z 2014 Appl. Surf. Sci. 308 402CrossRefGoogle Scholar
  35. 35.
    Lin S, Ye X and Huang J 2015 Phys. Chem. Chem. Phys. 17 888CrossRefGoogle Scholar
  36. 36.
    Tawfik S, Cui X Y, Carter D J and Stampfl C 2015 Phys. Chem. Chem. Phys. 17 6925CrossRefGoogle Scholar
  37. 37.
    Davies A G 2004 Org. Chem. 23 5007Google Scholar
  38. 38.
    Song H, Zhang L, He C, Qu Y, Tian Y and Lv Y 2011 J. Mater. Chem. 21 5972CrossRefGoogle Scholar
  39. 39.
    Zhou Q, Wang C, Fu Z, Tang Y and Zhang H 2014 Comput. Mater. Sci. 83 398CrossRefGoogle Scholar
  40. 40.
    Krasheninnikov A V, Lehtinen P O and Foster A S 2009 Phys. Rev. Lett. 102 34Google Scholar
  41. 41.
    Li F, Zhao J and Chen Z 2012 J. Phys. Chem. C 116 2507CrossRefGoogle Scholar
  42. 42.
    Wang X, Li X, Zhang L, Yoon Y and Weber P K 2009 Science 324 768CrossRefGoogle Scholar
  43. 43.
    Reddy A L M, Srivastava A, Gowda S R and Gullapalli H 2010 ACS Nano 4 6337CrossRefGoogle Scholar
  44. 44.
    Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215CrossRefGoogle Scholar
  45. 45.
    Andzelm J and Kolmel C 1995 J. Chem. Phys. 103 9312CrossRefGoogle Scholar
  46. 46.
    Gan L H and Zhao J Q 2009 Physica E 41 1249CrossRefGoogle Scholar
  47. 47.
    Boys S F and Bernardi F 1970 Mol. Phys. 19 553CrossRefGoogle Scholar
  48. 48.
    Ma L, Zhang J M, Xu K W and Ji V 2015 Appl. Surf. Sci. 343 121CrossRefGoogle Scholar
  49. 49.
    Zhang T, Xue Q, Shan M and Jiao Z 2012 J. Phys. Chem. C 116 19918CrossRefGoogle Scholar
  50. 50.
    Wu M, Cao C and Jiang J 2012 N. J. Phys. 12 063020CrossRefGoogle Scholar
  51. 51.
    Asadollah A and Oliaey B 2013 Physica E 52 136CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Razieh Razavi
    • 1
  • Seyyed Milad Abrishamifar
    • 2
  • Mohammad Reza Rezaei Kahkha
    • 3
  • Arash Vojood
    • 4
  • Meysam Najafi
    • 5
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of JiroftJiroftIran
  2. 2.Department of Chemical EngineeringNew York International University of Technology and ManagementNew YorkUSA
  3. 3.Department of Environmental Health EngineeringZabol University of Medical SciencesZabolIran
  4. 4.Young Researchers and Elite Club, Ardabil BranchIslamic Azad UniversityArdabilIran
  5. 5.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran

Personalised recommendations