Confinement of an antiferroelectric liquid crystal in a polymer nanonetwork: thermal and dielectric behaviour

  • Marlin BaralEmail author
  • A P Ranjitha
  • S Krishna Prasad


We report the thermal and dielectric investigations on a liquid crystal exhibiting an antiferroelectric phase and confined in a polymer network of sub-micron dimensions. Two different photo-polymerizable monomers have been employed for the purpose: one of them (HDDA) is bereft of any aromatic parts, while the other (RM82) contains aromatic as well as aliphatic units and, in fact, forms a liquid crystalline phase in its monomeric state. The polymerization, which is carried out in the presence of the liquid crystalline host, is expected to yield a nanosegregated structure for HDDA and blended structure for the RM82 case, the difference reflecting the morphologies of the networks, as evidenced by SEM images. Surprisingly, even a small concentration of the latter polymer added to the former variety has substantial influence on the morphology. The main work focusses on calorimetry and dielectric relaxation spectroscopy of the host liquid crystal confined in these nanonetworks created by the polymers, which can be considered to form virtual surfaces with a finite anchoring energy. We have investigated the in-phase and antiphase modes in the antiferroelectric phase, and the soft mode in the paraelectric phase preceding the antiferroelectric phase. The relaxation frequencies of all these modes are substantially influenced by the network, with the results showing certain surprises in cases containing both HDDA and RM82.


Nanonetwork polymer confinement antiferroelectric liquid crystal dielectric relaxation spectroscopy 


  1. 1.
    Chandani A D L, Ouchi Y, Takezoe H, Fukuda A, Furukawa K and Kishi A 1989 Jpn. J. Appl. Phys. 28 L1261CrossRefGoogle Scholar
  2. 2.
    Musevic I, Blinc R and Zeks B 2000 The physics of ferroelectric and antiferroelectric liquid crystals (Singapore: World Scientific)CrossRefGoogle Scholar
  3. 3.
    Fukuda A, Takanishi Y, Isozaki T, Ishikawa K and Takezoe H 1994 J. Mater. Chem. 4 997CrossRefGoogle Scholar
  4. 4.
    Crawford G P and Zumer S (eds) 1996 Liquid crystals in complex geometries: formed by polymer and porous networks (Boca Raton: CRC Press)Google Scholar
  5. 5.
    Dierking I 2014 Materials 7 3568CrossRefGoogle Scholar
  6. 6.
    Kumar R and Raina K K 2011 AIP Conf. Proc. 1393 46CrossRefGoogle Scholar
  7. 7.
    Archer P, Dierking I and Osipov M A 2008 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 78 051703Google Scholar
  8. 8.
    Tan G, Lee Y H, Gou F, Chen H, Huang Y, Lan Y F et al 2017 J. Phys. D: Appl. Phys. 50 493001CrossRefGoogle Scholar
  9. 9.
    Blinc R, Musevic I, Pirs J, Skarabot M, Zeks B, Crawford G P et al 1996 Liquid crystals in complex geometries: formed by polymer and porous networks (Boca Raton: CRC Press)Google Scholar
  10. 10.
    Kossyrev P A, Qi J, Priezjev N V, Pelcovits R A and Crawford G P 2002 Appl. Phys. Lett. 81 2986CrossRefGoogle Scholar
  11. 11.
    Petit M, Hemine J, Daoudi A, Ismaili M, Buisine J M and Costa D A 2009 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys79 031705Google Scholar
  12. 12.
    Strauss J and Kitzerow H S 1996 Appl. Phys. Lett. 69 725CrossRefGoogle Scholar
  13. 13.
    Rudquist P, Elfström D, Lagerwall S T and Dabrowski R 2006 Ferroelectrics 344 177CrossRefGoogle Scholar
  14. 14.
    Furue H and Yokoyama H 2003 J. Appl. Phys. 42 6180CrossRefGoogle Scholar
  15. 15.
    Madhuri P L, Prasad S K and Nair G G 2014 RSC Adv. 4 3121CrossRefGoogle Scholar
  16. 16.
    Guymon C A, Hoggan E N, Clark N A, Rieker T P, Walba D M and Bowman C N 1997 Science 275 57CrossRefGoogle Scholar
  17. 17.
    Labeeb A, Gleeson H F and Hegmann T 2015 Appl. Phys. Lett. 107 232903CrossRefGoogle Scholar
  18. 18.
    Kremer F and Schonhals A (eds) 2003 Broadband dielectric spectroscopy (Berlin: Springer)Google Scholar
  19. 19.
    Mishra A, Dabrowski R and Dhar R 2018 J. Mol. Liq. 249 106CrossRefGoogle Scholar
  20. 20.
    Parry-Jones L A and Elston S J 2001 Phys. Rev. E: Stat. Nonlin. Soft Matter Phys63 050701Google Scholar
  21. 21.
    Das D, Lahiri T and Majumder T P 2011 Physica B: Condens. Matter 406 1577CrossRefGoogle Scholar
  22. 22.
    Song J, Manna U, Fukuda A and Vij J K 2008 Appl. Phys. Lett. 93 142903CrossRefGoogle Scholar
  23. 23.
    Dadmun M D and Muthukumar M 1993 J. Chem. Phys. 98 4850CrossRefGoogle Scholar
  24. 24.
    Caggioni M, Roshi A, Barjami S, Mantegazza F, Iannacchione G S and Bellini T 2004 Phys. Rev. Lett. 93 127801CrossRefGoogle Scholar
  25. 25.
    Jayalakshmi V, Nair G G and Prasad S K 2007 J. Phys.: Condens. Matter 19 226213Google Scholar
  26. 26.
    Kumar V and Prasad S K 2012 RSC Adv. 2 8531CrossRefGoogle Scholar
  27. 27.
    Havriliak S and Negami S 1966 J. Polym. Sci. C 14 99CrossRefGoogle Scholar
  28. 28.
    Carlsson T, Žekš B, Filipič C and Levstik A 1990 Phys. Rev. A 42 877CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Centre for Nano and Soft Matter SciencesBengaluruIndia

Personalised recommendations