Advertisement

Morphology-controlled ultrafine \(\hbox {BaTiO}_{3}\)-based PVDF–HFP nanocomposite: synergistic effect on dielectric and electro-mechanical properties

  • Vaibhav Khiratkar
  • Radhamanohar Aepuru
  • H S Panda
Article
  • 52 Downloads

Abstract

Perovskite-based flexible nanocomposites were realized by dispersing \(\hbox {BaTiO}_{3}\) and modified monodisperse \(\hbox {BaTiO}_{3}\) in PVDF–HFP matrix. \(\hbox {BaTiO}_{3}\) was modified in situ by the addition of carbon solution, which was prepared electrochemically by using graphite rod. Structural characterization revealed that the decrease in tetragonality due to reduction in particle size of modified \(\hbox {BaTiO}_{3}\) than unmodified \(\hbox {BaTiO}_{3}\). The controlled morphology of treated-\(\hbox {BaTiO}_{3}\) nanoparticles was well dispersed in polymer matrix and exhibited effective dielectric constant. High active surface area of modified \(\hbox {BaTiO}_{3}\) suggested strong interfacial polarization, reduced dielectric loss and induced relaxation as compared to PVDF–HFP/BT nanocomposite. The experimental dielectric behaviour was fitted with theoretical Maxwell–Garnet model and composites followed up to 20 wt.% filler. The polarization effect was further proven by electric modulus studies of nanocomposites in broad frequency (0.1 Hz–1 MHz) and temperature (− 40 to \(130{^{\circ }}\hbox {C}\)). The results suggested that the shift in relaxation peaks towards higher frequencies with increase in filler content in polymer matrix. Further, a flexible-pressure sensing device was fabricated and evaluated for real applications.

Keywords

Polygonal barium titanate hydrothermal dielectric sensor 

References

  1. 1.
    Nayak S, Kumar T and Khastgir D 2016 Ceram. Int.  42 14490CrossRefGoogle Scholar
  2. 2.
    Arlt G, Hennings D and With G D 1985 J. Appl. Phys.  58 1619CrossRefGoogle Scholar
  3. 3.
    Nayak S, Sahoo B, Chaki K and Khastgir D 2014 RSC Adv.  4 1212CrossRefGoogle Scholar
  4. 4.
    Haertling G H 1999 J. Am. Ceram. Soc.  82 797CrossRefGoogle Scholar
  5. 5.
    Landeros J O, Yanez C G, Juarez R L, Velasco I D and Pfeiffer H 2012 J. Adv. Ceram.  1 204CrossRefGoogle Scholar
  6. 6.
    Moon J, Suvaci E, Morrone A, Costantino S A and Adair J H 2003 J. Eur. Ceram. Soc.  23 2153CrossRefGoogle Scholar
  7. 7.
    Lin M F, Thakur V K, Tan E J and Lee P S 2011 RSC Adv.  1 576CrossRefGoogle Scholar
  8. 8.
    Yang K, Huang X, Liu F and Jiang P 2013 IEEE international conference on solid dielectrics (ICSD) p 722Google Scholar
  9. 9.
    Dalle Vacche S D, Oliveira F, Leterrier Y, Michaud V, Damjanovic D and Manson J A E 2014 J. Mater. Sci.  49 4552CrossRefGoogle Scholar
  10. 10.
    Jung H M, Kang J H, Yang S Y, Won J C and Kim Y S 2010 Chem. Mater.  22 450CrossRefGoogle Scholar
  11. 11.
    Tang H, Zhou Z and Sodano H A 2014 ACS App. Mater. Int.  6 5450CrossRefGoogle Scholar
  12. 12.
    Nayak S, Chaki T K and Khastgir D 2014 Ind. Eng. Chem. Res.  53 14982CrossRefGoogle Scholar
  13. 13.
    Yang J, Zhang J, Liang C, Wang M, Zhao P, Liu M et al 2013 ACS App. Mater. Int.  5 7146CrossRefGoogle Scholar
  14. 14.
    Beier C W, Cuevas M A and Brutchey R L 2010 Langmuir  26 5067CrossRefGoogle Scholar
  15. 15.
    Xie L, Huang X, Huang Y, Yang K and Jiang P 2013 ACS App. Mater. Int.  5 1747CrossRefGoogle Scholar
  16. 16.
    Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R et al 2007 Adv. Mater.  19 1001CrossRefGoogle Scholar
  17. 17.
    Yang K, Huang X, Huang Y, Xie L and Jiang P 2013 Chem. Mater.  25 2327CrossRefGoogle Scholar
  18. 18.
    Dong L, Shi H, Cheng K, Wang Q, Weng W and Han W 2014 Nano Res7 1311CrossRefGoogle Scholar
  19. 19.
    Fu J, Hou Y, Zheng M, Wei Q, Zhu M and Yan H 2015 ACS Appl. Mater. Interf.  7 24480CrossRefGoogle Scholar
  20. 20.
    Wu C, Huang X, Wu X, Yu J, Xie L and Jiang P 2012 Comp. Sci. Tech72 521CrossRefGoogle Scholar
  21. 21.
    Chen Q, Jin L, Weng W, Han G and Du P 2008 Sur. Rev. Lett.  15 19CrossRefGoogle Scholar
  22. 22.
    Niu Y, Yu K, Bai Y and Wang H 2015 IEEE Trans. Ultrason. Ferroelec. Freq. Control  62 108CrossRefGoogle Scholar
  23. 23.
    Li H, He X, Kang Z, Huang H, Liu Y, Liu J et al 2010 Angew. Chem. Int. Ed.  49 4430CrossRefGoogle Scholar
  24. 24.
    Hammer M and Hoffmann M J 1998 J. Elect. Ceram2 75Google Scholar
  25. 25.
    Rabuffetti F A and Brutchey R L 2012 J. Am. Chem. Soc.  134 9475CrossRefGoogle Scholar
  26. 26.
    Qi J Q, Peng T, Hu Y M, Sun L,Wang Y, Chen W P et al 2011 Nano Sci. Res. Lett.  6 466CrossRefGoogle Scholar
  27. 27.
    Huang T C, Wang M T and Sheu H S 2007 J. Phys. Condens. Mater.  19 1Google Scholar
  28. 28.
    Dobal P S, Dixit A, Katiyar R S, Yu Z, Guo R and Bhalla A S 2001 J. Appl. Phys.  89 8085CrossRefGoogle Scholar
  29. 29.
    Aepuru R, Kankash S and Panda H S 2016 RSC Adv.  6 32272CrossRefGoogle Scholar
  30. 30.
    Mao Y P, Mao S Y, Ye Z G, Xie Z X and Zheng L S 2010 J. Appl. Phys.  108 014102CrossRefGoogle Scholar
  31. 31.
    Dang Z M, Xu H P and Wang H Y 2007 Appl. Phys. Lett.  90 012901CrossRefGoogle Scholar
  32. 32.
    Fan B H, Zha J W, Wang D R, Zhao J and Dang Z M 2012 Appl. Phys. Lett100 092903CrossRefGoogle Scholar
  33. 33.
    Tian F and Ohki Y 2014 IEEE Trans. Dielec. Elec. Insulat.  21 929CrossRefGoogle Scholar
  34. 34.
    Chanmal C V and Jog J P 2008 Exp. Polym. Lett.  2 294CrossRefGoogle Scholar
  35. 35.
    Aepuru R, Rao B V B, Kale S N and Panda H S 2015 Mater. Chem. Phys167 61CrossRefGoogle Scholar
  36. 36.
    Aepuru R and Panda H S 2016 J. Phys. Chem. C  120 4813CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Vaibhav Khiratkar
    • 1
  • Radhamanohar Aepuru
    • 1
  • H S Panda
    • 1
  1. 1.Department of Materials EngineeringDefence Institute of Advanced TechnologyPuneIndia

Personalised recommendations