Tuning the BODIPY core for its potential use in DSSC: a quantum chemical approach
- 38 Downloads
Abstract
Boron dipyrromethene (BODIPY) is a highly promising candidate for use in dye-sensitized solar cell (DSSC), because of its attractive absorption characteristics such as strong extinction coefficients in the visible and near-IR ranges (70000–80000 \(\hbox {M}^{-1}\) \(\hbox {cm}^{-1})\), large quantum yields, longer excited-state lifetime and also high solubility in many organic solvents. Moreover, the absorption peaks can be shifted towards longer wavelengths when functionalized at suitable positions of the BODIPY core. Herein, on the basis of density functional theory (DFT) and time-dependent DFT, we provide the opto-electronic properties of BODIPY core-functionalized dyes to see their applicability in organic DSSC. Our systematic analyses reveal that the 2,6 substituted dyes show better photovoltaic properties compared to the 3,5 substituted ones. On the basis of empirical relationship, we have also calculated the photo-induced electron injection times of some dye-\(\hbox {TiO}_{2}\) composites, which seem to be in the ultrafast time scale, thus rendering them a promising candidate for DSSC applications. Our theoretical studies provide that judiciously designed BODIPY core-derived dyes show certain unique spectroscopic and electronic features that make them highly advantageous in DSSC applications as compared to other organic dyes.
Keywords
BODIPY DFT study DSSC applicationNotes
Acknowledgements
We sincerely acknowledge UGC, New Delhi, Govt. of India, for partial financial support. The financial support from SERB-DST, New Delhi, through the Project Ref. No. CS-085/2014 is gratefully acknowledged.
Supplementary material
References
- 1.O’regan B and Grfitzeli M 1991 Nature 353 737Google Scholar
- 2.Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P et al 2001 J. Am. Chem. Soc. 123 1613CrossRefGoogle Scholar
- 3.Nazeeruddin M K, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P et al 2005 J. Am. Chem. Soc. 127 16835CrossRefGoogle Scholar
- 4.Mishra A, Fischer M K and Bäuerle P 2009 Angew. Chem. Int. Ed. 48 2474CrossRefGoogle Scholar
- 5.Wu Y and Zhu W 2013 Chem. Soc. Rev. 42 2039CrossRefGoogle Scholar
- 6.Pramanik A, Sarkar S, Pal S and Sarkar P 2015 Phys. Lett. A 379 1036CrossRefGoogle Scholar
- 7.Wang B, Wang Y, Hua J, Jiang Y, Huang J, Qian S et al 2011 Chem. Euro. J. 17 2647CrossRefGoogle Scholar
- 8.Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z et al 2008 Chem. Mater. 20 6208CrossRefGoogle Scholar
- 9.Biswas S, Pramanik A, Ahmed T, Sahoo S K and Sarkar P 2016 Chem. Phys. Lett. 649 23CrossRefGoogle Scholar
- 10.Biswas S, Pramanik A and Sarkar P 2017 Comput. Theor. Chem. 1103 38CrossRefGoogle Scholar
- 11.Koumura N, Wang Z-S, Mori S, Miyashita M, Suzuki E and Hara K 2006 J. Am. Chem. Soc. 128 14256CrossRefGoogle Scholar
- 12.Zhang X-H, Wang Z-S, Cui Y, Koumura N, Furube A and Hara K 2009 J. Phys. Chem. C 113 13409CrossRefGoogle Scholar
- 13.Kim S, Kim D, Choi H, Kang M S, Song K, Kang S O et al 2008 Chem. Commun. (Camb.) 40 4951CrossRefGoogle Scholar
- 14.Qin H, Wenger S, Xu M, Gao F, Jing X, Wang P et al 2008 J. Am. Chem. Soc. 130 9202CrossRefGoogle Scholar
- 15.Horiuchi T, Miura H, Sumioka K and Uchida S 2004 J. Am. Chem. Soc. 126 12218CrossRefGoogle Scholar
- 16.Horiuchi T, Miura H and, Uchida S 2003 Chem. Commun. 24 3036CrossRefGoogle Scholar
- 17.Tian H, Yang X, Chen R, Pan Y, Li L, Hagfeldt A et al 2007 Chem. Commun. 36 3741CrossRefGoogle Scholar
- 18.Yang C-J, Chang Y J, Watanabe M, Hon Y-S and Chow T J 2012 J. Mater. Chem. 22 4040CrossRefGoogle Scholar
- 19.Yen Y-S, Hsu Y-C, Lin J T, Chang C-W, Hsu C-P and Yin D-J 2008 J. Phys. Chem. C 112 12557CrossRefGoogle Scholar
- 20.Wong B M and Cordaro J G 2011 J. Phys. Chem. C 11518333CrossRefGoogle Scholar
- 21.Erten-Ela S, Yilmaz M D, Icli B, Dede Y, Icli S and Akkaya E U 2008 Org. Lett. 10 3299CrossRefGoogle Scholar
- 22.Kolemen S, Cakmak Y, Erten-Ela S, Altay Y, Brendel J, Thelakkat M et al 2010 Org. Lett. 12 3812CrossRefGoogle Scholar
- 23.Loudet A and Burgess K 2007 Chem. Rev. 107 4891CrossRefGoogle Scholar
- 24.Ulrich G, Ziessel R and Harriman A 2008 Angew. Chem. Int. Ed. 47 1184CrossRefGoogle Scholar
- 25.Boens N, Leen V and Dehaen W 2012 Chem. Soc. Rev. 41 1130CrossRefGoogle Scholar
- 26.Baruah M, Qin W, Vallée R A, Beljonne D, Rohand T, Dehaen W et al 2005 Org. Lett. 7 4377CrossRefGoogle Scholar
- 27.Jiao C, Huang K-W and Wu J 2011 Org. Lett. 13 632CrossRefGoogle Scholar
- 28.Rohand T, Baruah M, Qin W, Boens N and Dehaen W 2006 Chem. Commun. 3 266CrossRefGoogle Scholar
- 29.Misra R 2017 J. Phys. Chem. C 121 5731CrossRefGoogle Scholar
- 30.Bañuelos J 2016 Chem. Record. 16 335CrossRefGoogle Scholar
- 31.Zhu S, Zhang J, Vegesna G, Luo F-T, Green S A and Liu H 2010 Org. Lett. 13 438CrossRefGoogle Scholar
- 32.Hattori S, Ohkubo K, Urano Y, Sunahara H, Nagano T, Wada Y et al 2005 J. Phys. Chem. B 109 15368CrossRefGoogle Scholar
- 33.Kolemen S, Bozdemir O A, Cakmak Y, Barin G, Erten-Ela S, Marszalek M et al 2011 Chem. Sci. 2 949CrossRefGoogle Scholar
- 34.Ning Z, Zhang Q, Wu W, Pei H, Liu B and Tian H 2008 J. Org. Chem. 73 3791CrossRefGoogle Scholar
- 35.Ditchfield R, Hehre W J and Pople J A 1971 J. Chem. Phys. 54 724CrossRefGoogle Scholar
- 36.Becke A D 1993 J. Chem. Phys. 98 5648CrossRefGoogle Scholar
- 37.Ni Y, Zeng L, Kang N Y, Huang K W, Wang L, Zeng Z et al 2014 Chem. Euro. J. 20 2301CrossRefGoogle Scholar
- 38.Tomasi J, Mennucci B and Cammi R 2005 Chem. Rev. 105 2999CrossRefGoogle Scholar
- 39.Zarate X, Schott-Verdugo S, Rodriguez-Serrano A and Schott E 2016 J. Phys. Chem. A 120 1613CrossRefGoogle Scholar
- 40.Sánchez-de-Armas R O, Oviedo López J, San-Miguel M A, Sanz J F, Ordejón P and Pruneda M 2010 J. Chem. Theor. Comput. 6 2856CrossRefGoogle Scholar
- 41.Andreev A S, Kuznetsov V N A and Chizhov Y V 2012 J. Phys. Chem. C 116 18139CrossRefGoogle Scholar
- 42.Frisch M, Trucks G, Schlegel H B, Scuseria G, Robb M, Cheeseman J et al 2009 Wallingford, CT 19 227Google Scholar
- 43.Ghosh N N, Chakraborty A, Pal S, Pramanik A and Sarkar P 2014 Phys. Chem. Chem. Phys. 16 25280CrossRefGoogle Scholar
- 44.Barone V and Cossi M 1998 J. Phys. Chem. A 102 1995CrossRefGoogle Scholar
- 45.Tan Y Y, Tu W H and Manzhos S 2014 Chem. Phys. Lett. 593 14CrossRefGoogle Scholar
- 46.Feng J, Jiao Y, Ma W, Nazeeruddin M K, Grätzel M and Meng S 2013 J. Phys. Chem. C 117 3772CrossRefGoogle Scholar
- 47.Lu T and Chen F 2012 J. Comput. Chem. 33 580CrossRefGoogle Scholar
- 48.Li H-B, Zhang J, Wu Y, Jin J-L, Duan Y-A, Su Z-M et al 2014 Dyes Pigments 108 106CrossRefGoogle Scholar
- 49.Biswas S, Pramanik A, Pal S and Sarkar P 2017 J. Phys. Chem. C 121 2574CrossRefGoogle Scholar
- 50.Pratik S M and Datta A 2013 Phys. Chem. Chem. Phys. 15 18471CrossRefGoogle Scholar
- 51.Wei T, Sun X, Li X, Ågren H and Xie Y 2015 ACS Appl. Mater. Interf. 7 21956CrossRefGoogle Scholar
- 52.Yang Z, Liu C, Shao C, Lin C and Liu Y 2015 J. Phys. Chem. C 119 21852CrossRefGoogle Scholar
- 53.Li M, Kou L, Diao L, Zhang Q, Li Z, Wu Q et al 2015 J. Phys. Chem. C 119 9782CrossRefGoogle Scholar
- 54.Qu Z-W and Kroes G-J 2007 J. Phys. Chem. C 111 16808CrossRefGoogle Scholar
- 55.Tarsang R, Promarak V, Sudyoadsuk T, Namuangruk S, Kungwan N, Khongpracha P et al 2015 RSC Adv. 5 38130CrossRefGoogle Scholar
- 56.Monti A, Negre C F, Batista V S, Rego L G, de Groot H J and Buda F 2015 J. Phys. Chem. Lett. 6 2393CrossRefGoogle Scholar
- 57.Ding W-L, Li Q-S and Li Z-S 2015 J. Mater. Chem. A 3 19948CrossRefGoogle Scholar
- 58.Gupta K S, Zhang J, Marotta G, Reddy M A, Singh S P, Islam A et al 2015 Dyes Pigments 113 536CrossRefGoogle Scholar
- 59.Ronca E, Marotta G, Pastore M and De Angelis F 2014 J. Phys. Chem. C 118 16927CrossRefGoogle Scholar
- 60.Wei H, Luo J-W, Li S-S and Wang L-W 2016 J. Am. Chem. Soc. 138 8165Google Scholar