Acid-activated bentonite (Maghnite-\(\hbox {H}^{+})\) as a novel catalyst for the polymerization of decamethylcyclopentasiloxane

  • Djamal Eddine Kherroub
  • Mohammed Belbachir
  • Saad Lamouri
  • Karim Chikh
Article
  • 19 Downloads

Abstract

In this study, we propose Maghnite-\(\hbox {H}^{+}\), as an ecological, cost-effective and easily renewable catalyst, for the polymerization of decamethylcyclopentasiloxane (D5). The Maghnite is a clay consisting primarily of smectite minerals (montmorillonite group), which can be activated/reactivated through a simple process, by replacing interlayer cations by protons. Linear polymers with higher molecular mass and narrower molecular mass distribution (MMD) can be obtained with less cyclic by-products, using Maghnite-\(\hbox {H}^{+}\). The reaction was investigated in bulk, taking into account the effect of time, temperature and amount of catalyst on the monomer conversion and MMD. When the yield rises to 96%, the MMD is broadened, suggesting the formation of cyclic oligomers and/or crosslinking bonds, this was confirmed experimentally by infra-red spectroscopy, proton nuclear magnetic resonance (\(^{1}\hbox {H}\) NMR) and \(^{13}\hbox {C}\) NMR analyses. The kinetics have been also studied; the reaction is first order in the monomer. The proposed reaction mechanism shows clearly the role of Maghnite-\(\hbox {H}^{+}\) for D5 polymerization.

Keywords

Catalyst maghnite-\(\hbox {H}^{+}\) bentonite decamethylcyclopentasiloxane ring opening polymerization 

References

  1. 1.
    Clark J H and Rhodes C N 2000 in: J H Clark (ed) Clean synthesis using porous inorganic solid catalysts and supported reagents (Cambridge: Royal Society of Chemistry) p 10Google Scholar
  2. 2.
    Chen B, Zhan X, Yi L and Chen F 2007Chin. J. Chem. Eng. 15 661CrossRefGoogle Scholar
  3. 3.
    Friedel C and Crafts J M 1877 Compt. Rend. 84 1392Google Scholar
  4. 4.
    Friedel C and Crafts J M 1877 Bull. Soc. Chim. Fr. 27 530Google Scholar
  5. 5.
    Rodriquez F 1989 in Principles of polymer systems (New York: Hemisphere Publishing Corp) p 589Google Scholar
  6. 6.
    DeGroot J V, Norris A M, Shedric O and Clappe T V 2004 in: R Norwood, M Eich and M Kuzyk (eds) Highly transparent silicone materials, Proceedings of SPIE, Midland, p 116Google Scholar
  7. 7.
    Narins R S and Beer K 2006 Plast. Reconstr. Surg. 118 77CrossRefGoogle Scholar
  8. 8.
    Kendrick T C, Parbhoo B and White J W 1991 in: D A Armitage, R J P Corriu, T C Kendrick, B Parbhoo, T D Tilley and J C Young (eds) The silicon–heteroatom bond (Chichester: J. Wiley & Sons) p 67Google Scholar
  9. 9.
    Chojnowski J and Cypryk M 2000 in: R G Jones, W Ando and J Chojnowski (eds) Silicon-containing polymers (Dordrecht: Kluwer) p 3Google Scholar
  10. 10.
    Chojnowski J, Cypryk M and Kazmierski K 2002 Macromolecules 36 9904CrossRefGoogle Scholar
  11. 11.
    Sigwalt P 1987 Polym. J19 567CrossRefGoogle Scholar
  12. 12.
    Molenberg A and Möller M 1995 Macromol. Rapid Commun. 16 449CrossRefGoogle Scholar
  13. 13.
    Pibre G, Chaumont P, Fleury E and Cassagnau P 2008 Polymer 49 234CrossRefGoogle Scholar
  14. 14.
    Gee R P 2015 Colloids Surf. A Physicochem. Eng. Asp. 481 297CrossRefGoogle Scholar
  15. 15.
    Sun C N, Shen M M, Deng L L, Mo J Q and Zhou B W 2014 Chin. Chem. Lett. 25 621CrossRefGoogle Scholar
  16. 16.
    Sijiu J, Teng Q and Xiaoyu L 2010 Polymer 51 4087CrossRefGoogle Scholar
  17. 17.
    Conan J T, William P W and Guoping C 2003 Polymer 44 4149CrossRefGoogle Scholar
  18. 18.
    Chojnowski J, Rubinsztajn S, Fortuniak W and Kurjata J 2007 J. Inorg. Organomet. Polym. Mater. 17 173CrossRefGoogle Scholar
  19. 19.
    Wilczek L, Rubinsztajn S and Chojnowski J 1986 Makromol. Chem. 187 39CrossRefGoogle Scholar
  20. 20.
    Hardman B and Torkelson A 1989 in: Encyclopedia of polymer science and engineering (New York: John Wiley & Sons) p 204Google Scholar
  21. 21.
    Kherroub D E, Belbachir M and Lamouri S 2014 Orient. J. Chem. 30 1647CrossRefGoogle Scholar
  22. 22.
    Belbachir M and Bensaoula A 2001 US Patent 6,274,527B1Google Scholar
  23. 23.
    Kherroub D E, Belbachir M, Lamouri S, Bouhadjar L and Chikh K 2013 Orient. J. Chem. 29 1429CrossRefGoogle Scholar
  24. 24.
    Kherroub D E, Belbachir M and Lamouri S 2015 Res. Chem. Intermed. 41 5217CrossRefGoogle Scholar
  25. 25.
    Kherroub D E, Belbachir M and Lamouri S 2015 Bull. Mater. Sci. 38 1CrossRefGoogle Scholar
  26. 26.
    Meghabar R, Megherbi A and Belbachir M 2003 Polymer 44 4097CrossRefGoogle Scholar
  27. 27.
    Bouchama A, Ferrahi M I and Belbachir M 2015 J. Mater. Environ. Sci. 6 977Google Scholar
  28. 28.
    Ya-Qing Z, Xiang K, Xiao-Li Z and Zheng-Hong L 2010 Powder Technol. 201 146CrossRefGoogle Scholar
  29. 29.
    Jian W, Xueming C, Panjin J, Qing H and Mingtao R 2015 Mater. Chem. Phys. 149 216Google Scholar
  30. 30.
    Ramli M R, Othman M B H, Arifin A and Ahmad Z 2011 Polym. Degrad. Stab. 96 2064CrossRefGoogle Scholar
  31. 31.
    Namrata S T, Florence D J, Lawrence F and Jacques L 2012 Open J. Org. Polym. Mater. 2 13CrossRefGoogle Scholar
  32. 32.
    Dollase T, Spiess H W, Gottlieb M and Yerushalmi-Rozen R 2002 Europhys. Lett. 60 390CrossRefGoogle Scholar
  33. 33.
    Kherroub D E, Belbachir M and Lamouri S 2014 Bull. Chem. React. Eng. Catal. 9 74CrossRefGoogle Scholar
  34. 34.
    Kherroub D E, Belbachir M and Lamouri S 2015 Arab. J. Sci. Eng. 40 143CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Djamal Eddine Kherroub
    • 1
    • 2
  • Mohammed Belbachir
    • 1
  • Saad Lamouri
    • 3
  • Karim Chikh
    • 1
  1. 1.Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Exact and Applied SciencesUniversity of Oran, 1 Ahmed Ben BellaEl’Menouer OranAlgeria
  2. 2.Institute of Sciences and TechnologyUniversity Centre of Relizane Ahmed ZabanaRelizaneAlgeria
  3. 3.Laboratory of Macromolecular ChemistryPolytechnic Military School (EMP)Bordj El BahriAlgeria

Personalised recommendations