Molecular Biotechnology

, Volume 61, Issue 10, pp 791–800 | Cite as

Cloning and Characterization of a Chondroitin AC Exolyase from Arthrobacter sp. SD-04

  • Lu-Zhou Chen
  • Chu-Qi Shi
  • Feng-Xin Yin
  • Feng-Shan Wang
  • Ju-Zheng ShengEmail author
Original paper


Glycosaminoglycans (GAGs) and their low-molecular weight derivates have received considerable interest in terms of their potential clinical applications, and display a wide variety of pharmacological and pharmacokinetic properties. Structurally distinct GAG chains can be prepared by enzymatic depolymerization. A variety of bacterial chondroitin sulfate (CS) lyases have been identified, and have been widely used as catalysts in this process. Here, we identified a putative chondroitin AC exolyase gene, AschnAC, from an Arthrobacter sp. strain found in a CS manufacturing workshop. We expressed the enzyme, AsChnAC, recombinantly in Escherichia coli, then purified and characterized it in vitro. The enzyme indeed displayed exolytic cleavage activity toward HA and various CSs. Removing the putative N-terminal secretion signal peptide of AsChnAC improved its expression level in E. coli while maintaining chondroitin AC exolyase activity. This novel catalyst exhibited its optimal activity in the absence of added metal ions. AsChnAC has potential applications in preparation of low-molecular weight GAGs, making it an attractive catalyst for further investigation.


Glycosaminoglycan Chondroitin sulfate Chondroitin AC exolyase Arthrobacter sp. Escherichia coli Substrate specificity Enzymatic characterization 



Funding was provided by National Natural Science Foundation of China (Grant No. 31770845)

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

12033_2019_208_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 44 kb)


  1. 1.
    Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., et al. (Eds.). (2009). Essentials of glycobiology (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  2. 2.
    DeAngelis, P. L., Liu, J., & Linhardt, R. J. (2013). Chemoenzymatic synthesis of glycosaminoglycans: Re-creating, re-modeling and re-designing nature’s longest or most complex carbohydrate chains. Glycobiology, 23(7), 764–777.CrossRefGoogle Scholar
  3. 3.
    Gandhi, N. S., & Mancera, R. L. (2008). The structure of glycosaminoglycans and their interactions with proteins. Chemical Biology & Drug Design, 72(6), 455–482. Scholar
  4. 4.
    Taylor, K. R., & Gallo, R. L. (2006). Glycosaminoglycans and their proteoglycans: Host-associated molecular patterns for initiation and modulation of inflammation. The FASEB Journal, 20(1), 9–22. Scholar
  5. 5.
    Xu, D., & Esko, J. D. (2014). Demystifying heparan sulfate-protein interactions. Annual Review of Biochemistry, 83(1), 129–157. Scholar
  6. 6.
    Pantazaka, E., & Papadimitriou, E. (2014). Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(8), 2643–2650. Scholar
  7. 7.
    Li, P., Sheng, J., Liu, Y., Li, J., Liu, J., & Wang, F. (2013). Heparosan-derived heparan sulfate/heparin-like compounds: One kind of potential therapeutic agents. Medicinal Research Reviews, 33(3), 665–692. Scholar
  8. 8.
    Li, L., Li, Y., Ijaz, M., Shahbaz, M., Lian, Q., & Wang, F. (2015). Review on complement analysis method and the roles of glycosaminoglycans in the complement system. Carbohydrate Polymers, 134, 590–597. Scholar
  9. 9.
    Migliore, A., & Procopio, S. (2015). Effectiveness and utility of hyaluronic acid in osteoarthritis. Clinical Cases in Mineral and Bone Metabolism, 12(1), 31–33. Scholar
  10. 10.
    Liu, J., & Pedersen, L. C. (2006). Anticoagulant heparan sulfate: Structural specificity and biosynthesis. Applied Microbiology and Biotechnology, 74(2), 263–272. Scholar
  11. 11.
    Zhang, Q., Li, J., Liu, C., Song, C., Li, P., Yin, F., et al. (2015). Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Aβ)-induced damage in vitro and in vivo. Neuroscience, 305, 169–182. Scholar
  12. 12.
    Bisio, A., Vecchietti, D., Citterio, L., Guerrini, M., Raman, R., Bertini, S., et al. (2009). Structural features of low-molecular-weight heparins affecting their affinity to antithrombin. Thrombosis and Haemostasis, 102(5), 865–873. Scholar
  13. 13.
    Merli, G. J., & Groce, J. B. (2010). Pharmacological and clinical differences between low-molecular-weight heparins. Pharmacy and Therapeutics, 35(2), 95–105.Google Scholar
  14. 14.
    Pempe, E. H., Xu, Y., Gopalakrishnan, S., Liu, J., & Harris, E. N. (2012). Probing structural selectivity of synthetic heparin binding to stabilin protein receptors. The Journal of Biological Chemistry, 287(25), 20774–20783. Scholar
  15. 15.
    Ernst, S., Langer, R., Cooney, C. L., & Sasisekharan, R. (1995). Enzymatic degradation of glycosaminogIycans. Critical Reviews in Biochemistry and Molecular Biology, 30(5), 387–444. Scholar
  16. 16.
    Lunin, V. V., Li, Y., Linhardt, R. J., Miyazono, H., Kyogashima, M., Kaneko, T., et al. (2004). High-resolution crystal structure of arthrobacter aurescens chondroitin AC Lyase: An enzyme-substrate complex defines the catalytic mechanism. Journal of Molecular Biology, 337(2), 367–386. Scholar
  17. 17.
    Lombard, V., Bernard, T., Rancurel, C., Brumer, H., Coutinho, P. M., & Henrissat, B. (2010). A hierarchical classification of polysaccharide lyases for glycogenomics. The Biochemical Journal, 432(3), 437–444. Scholar
  18. 18.
    Garron, M.-L., & Cygler, M. (2010). Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology, 20(12), 1547–1573. Scholar
  19. 19.
    Linhardt, R. J., Avci, F. Y., Toida, T., Kim, Y. S., & Cygler, M. (2006). CS lyases: Structure, activity, and applications in analysis and the treatment of diseases. Advances in Pharmacology, 53, 187–215.CrossRefGoogle Scholar
  20. 20.
    Hernáiz, M. J., & Linhardt, R. J. (2001). Degradation of chondroitin sulfate and dermatan sulfate with chondroitin lyases. Methods in Molecular Biology, 171, 363–371. Scholar
  21. 21.
    Huang, W., Boju, L., Tkalec, L., Su, H., Yang, H. O., Gunay, N. S., et al. (2001). Active site of chondroitin AC lyase revealed by the structure of enzyme-oligosaccharide complexes and mutagenesis. Biochemistry, 40(8), 2359–2372.CrossRefGoogle Scholar
  22. 22.
    Capila, I., Wu, Y., Rethwisch, D. W., Matte, A., Cygler, M., & Linhardt, R. J. (2002). Role of arginine 292 in the catalytic activity of chondroitin AC lyase from Flavobacterium heparinum. Biochimica et Biophysica Acta, 1597(2), 260–270.CrossRefGoogle Scholar
  23. 23.
    Kale, V., Friðjónsson, Ó., Jónsson, J. Ó., Kristinsson, H. G., Ómarsdóttir, S., & Hreggviðsson, G. Ó. (2015). Chondroitin lyase from a marine Arthrobacter sp. MAT3885 for the production of chondroitin sulfate disaccharides. Marine Biotechnology, 17(4), 479–492. Scholar
  24. 24.
    Fang, Y., Yang, S., Fu, X., Xie, W., Li, L., Liu, Z., et al. (2019). Expression, purification and characterization of chondroitinase AC II from marine bacterium Arthrobacter sp. CS01. Marine Drugs, 17(3), 185. Scholar
  25. 25.
    Ke, T., Zhangfu, L., Qing, G., Yong, T., Hong, J., Hongyan, R., et al. (2005). Isolation of Serratia marcescens as a chondroitinase-producing bacterium and purification of a novel chondroitinase AC. Biotechnology Letters, 27(7), 489–493. Scholar
  26. 26.
    Shim, K.-W., & Kim, D.-H. (2008). Cloning and expression of chondroitinase AC from bacteroides stercoris HJ-15. Protein Expression and Purification, 58(2), 222–228. Scholar
  27. 27.
    Yin, F.-X., Wang, F.-S., & Sheng, J.-Z. (2016). Uncovering the catalytic direction of chondroitin AC exolyase from the reducing end towards the non-reducing end. Journal of Biological Chemistry, 291(9), 4399–4406. Scholar
  28. 28.
    Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343–345. Scholar
  29. 29.
    Wang, T.-T., Zhu, C.-Y., Zheng, S., Meng, C.-C., Wang, T.-T., Meng, D.-H., et al. (2018). Identification and characterization of a chondroitin synthase from Avibacterium paragallinarum. Applied Microbiology and Biotechnology, 102(11), 4785–4797. Scholar
  30. 30.
    Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320–W324. Scholar
  31. 31.
    Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 4(1), 1–13. Scholar
  32. 32.
    Maiti, R., Van Domselaar, G. H., Zhang, H., & Wishart, D. S. (2004). SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Research, 32, W590–W594. Scholar
  33. 33.
    Ochman, H., Gerber, A. S., & Hartl, D. L. (1988). Genetic applications of an inverse polymerase chain reaction. Genetics, 120(3), 621–623.Google Scholar
  34. 34.
    Park, K.-B., & Oh, S.-H. (2007). Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technology, 98(2), 312–319. Scholar
  35. 35.
    Liu, Q., Liu, H.-C., Zhou, Y.-G., & Xin, Y.-H. (2019). Genetic diversity of glacier-inhabiting Cryobacterium bacteria in China and description of Cryobacterium zongtaii sp. nov. and Arthrobacter glacialis sp. nov. Systematic and Applied Microbiology, 42(2), 168–177. Scholar
  36. 36.
    Castrignanò, T., DE Meo, P. D., Cozzetto, D., Talamo, I. G., & Tramontano, A. (2006). The PMDB protein model database. Nucleic Acids Research, 34(suppl_1), D306–D309. Scholar
  37. 37.
    Guo, X., Shi, Y., Sheng, J., & Wang, F. (2014). A novel hyaluronidase produced by Bacillus sp. A50. PLoS ONE, 9(4), e94156. Scholar
  38. 38.
    Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical SciencesShandong UniversityJinanChina
  2. 2.National Glycoengineering Research CenterShandong UniversityJinanChina

Personalised recommendations