Advertisement

Molecular Biotechnology

, Volume 61, Issue 10, pp 725–741 | Cite as

Recent Trends in Enhancing the Resistance of Cultivated Plants to Heavy Metal Stress by Transgenesis and Transcriptional Programming

  • Elena S. BelykhEmail author
  • Tatiana A. Maystrenko
  • Ilya O. Velegzhaninov
Review
  • 92 Downloads

Abstract

Normal growth and development of high plants strongly depends on the concentration of microelements, including essential heavy metals, in the substrate. However, an excess of those elements may become harmful. Therefore, micronutrient concentrations in plant tissue should be well-balanced and controlled by homeostatic mechanisms. The advancement of knowledge on the regulation of metal homeostasis in plants is important for phytoremediation of metal-contaminated soil and for micronutrient malnutrition control. Experimental data from loss-of-function and gain-of-function studies, including functional descriptions and classifications have presented new opportunities for multiplex CRISPR/dCas9-driven control of gene expression and have opened up new prospects for the goal-seeking regulation of metal homeostasis in plants. The aim of this review is to help for multiplex transcriptional programming targets search by summarizing and analyzing data on possible ways to handle a plant’s ability to maintain metal homeostasis.

Keywords

Metal homeostasis Transgenic plants Metal tolerance and accumulation Genetic engineering 

Notes

Funding

The funding was provided by Budget federal program of the Russian Federation (АААА-А18-118011190102-7) and Russian Foundation for Basic Research (19-04-00476 А).

References

  1. 1.
    Astudillo, C., Fernandez, A. C., Blair, M. W., & Cichy, K. A. (2013). The Phaseolus vulgaris ZIP gene family: Identification, characterization, mapping, and gene expression. Frontiers in Plant Science, 4, 286.  https://doi.org/10.3389/fpls.2013.00286.Google Scholar
  2. 2.
    Lucca, P., Poletti, S., & Sautter, C. (2006). Genetic engineering approaches to enrich rice with iron and vitamin A. Physiologia Plantarum, 126, 291–303.  https://doi.org/10.1111/j.1399-3054.2006.00609.x.Google Scholar
  3. 3.
    Chen, S., Han, X., Fang, J., Lu, Z., Qiu, W., Liu, M., et al. (2017). Sedum alfredii SaNramp6 metal transporter contributes to cadmium accumulation in transgenic Arabidopsis thaliana. Scientific Reports, 7, 13318.  https://doi.org/10.1038/s41598-017-13463-4.Google Scholar
  4. 4.
    Yongpisanphop, J., Babel, S., Kruatrachue, M., & Pokethitiyook, P. (2017). Hydroponic screening of fast-growing tree species for lead phytoremediation potential. Bulletin of Environment Contamination and Toxicology, 99(4), 518–523.  https://doi.org/10.1007/s00128-017-2157-8.Google Scholar
  5. 5.
    Shabir, R., Abbas, G., Saqib, M., Shahid, M., Shah, G. M., Akram, M., et al. (2018). Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress. International Journal of Phytoremediation, 20(7), 739–746.  https://doi.org/10.1080/15226514.2017.1413339.Google Scholar
  6. 6.
    Yu, X., Luo, Q., Huang, K., Yang, G., & He, G. (2018). Prospecting for microelement function and biosafety assessment of transgenic cereal plants. Frontiers in Plant Science, 9, 326.  https://doi.org/10.3389/fpls.2018.00326.Google Scholar
  7. 7.
    Koźmińska, A., Wiszniewska, A., Hanus-Fajerska, E., & Muszyńska, E. (2018). Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnology Reports, 12(1), 1–14.  https://doi.org/10.1007/s11816-017-0467-2.Google Scholar
  8. 8.
    Yan, J., Wang, P., Wang, P., Yang, M., Lian, X., Tang, Z., et al. (2016). A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant, Cell and Environment, 39(9), 1941–1954.Google Scholar
  9. 9.
    Huang, X.-Y., Deng, F., Yamaji, N., Pinson, N., Fujii-Kashino, M., Danku, J., et al. (2016). A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nature Communications, 7, 12138.  https://doi.org/10.1038/ncomms12138.Google Scholar
  10. 10.
    Boonyaves, K., Wu, T.-Y., Gruissem, W., & Bhullar, N. K. (2017). Enhanced grain iron levels in rice expressing an IRON-REGULATED METAL TRANSPORTER, NICOTIANAMINE SYNTHASE, and FERRITIN gene cassette. Frontiers in Plant Science, 8, 130.  https://doi.org/10.3389/fpls.2017.00130.Google Scholar
  11. 11.
    Ricachenevsky, F. K., de Araújo Junior, A. T., Fett, J. P., & Sperotto, R. A. (2018). You shall not pass: Root vacuoles as a symplastic checkpoint for metal translocation to shoots and possible application to grain nutritional quality. Frontiers in Plant Science, 9, 412.  https://doi.org/10.3389/fpls.2018.00412.Google Scholar
  12. 12.
    Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109, E2579–E2586.Google Scholar
  13. 13.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.Google Scholar
  14. 14.
    Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., et al. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229–1232.  https://doi.org/10.1038/cr.2013.114.Google Scholar
  15. 15.
    Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188.  https://doi.org/10.1093/nar/gkt780.Google Scholar
  16. 16.
    Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31(8), 686–688.  https://doi.org/10.1038/nbt.2650.Google Scholar
  17. 17.
    Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451.Google Scholar
  18. 18.
    Khare, D., Mitsuda, N., Lee, S., Song, W.-Y., Hwang, D., Ohme-Takagi, M., et al. (2017). Root avoidance of toxic metals requires the GeBP-LIKE 4 transcription factor in Arabidopsis thaliana. New Phytologist, 213(3), 1257–1273.  https://doi.org/10.1111/nph.14242.Google Scholar
  19. 19.
    Hou, X., Tong, H., Selby, J., Dewitt, J., Peng, X., & He, Z. H. (2005). Involvement of a cell wall-associated kinase, WAKL4, Arabidopsis mineral responses. Plant Physiology, 139(4), 1704–1716.  https://doi.org/10.1104/pp.105.066910.Google Scholar
  20. 20.
    Ren, Y., Chen, Y., An, J., Zhao, Z., Zhang, G., Wang, Y., et al. (2018). Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Plant Science, 270, 245–256.  https://doi.org/10.1016/j.plantsci.2018.02.022.Google Scholar
  21. 21.
    Aihemaiti, A., Jiang, J., Li, D., Li, T., Zhang, W., & Ding, X. (2017). Toxic metal tolerance in native plant species grown in a vanadium mining area. Environmental Science and Pollution Research International, 24(34), 26839–26850.  https://doi.org/10.1007/s11356-017-0250-5.Google Scholar
  22. 22.
    Williams, L. E., & Mills, R. F. (2005). P-1B-ATPases – an ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science, 10, 491–502.Google Scholar
  23. 23.
    Burkhead, J. L., Gogolin Reynolds, K. A., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182, 799–816.  https://doi.org/10.1111/j.1469-8137.2009.02846.x.Google Scholar
  24. 24.
    Andrés-Colás, N., Sancenon, V., Rodriguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., et al. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45, 225–236.Google Scholar
  25. 25.
    Deng, F., Yamaji, N., Xia, J., & Ma, J. F. (2013). A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiology, 163(3), 1353–1362.  https://doi.org/10.1104/pp.113.226225.Google Scholar
  26. 26.
    Migocka, M., Papierniak, A., Maciaszczyk-Dziubinska, E., Posyniak, E., & Kosieradzka, A. (2014). Molecular and biochemical properties of two P1B2-ATPases, CsHMA3 and CsHMA4, from cucumber. Plant, Cell and Environment, 38(6), 1127–1141.  https://doi.org/10.1111/pce.12447.Google Scholar
  27. 27.
    Barabasz, A., Klimecka, M., Kendziorek, M., Weremczuk, A., Ruszczynska, A., Bulska, E., et al. (2016). The ratio of Zn to Cd supply as a determinant of metalhomeostasis gene expression in tobacco and its modulation by overexpressing the metal exporter AtHMA4. Journal of Experimental Botany, 67(21), 6201–6214.  https://doi.org/10.1093/jxb/erw389.Google Scholar
  28. 28.
    Suryawanshi, V., Talke, I. N., Weber, M., Eils, R., Brors, B., Clemens, S., et al. (2016). Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri. BMC Genomics, 17(Suppl 13), 1034.  https://doi.org/10.1186/s12864-016-3319-5.Google Scholar
  29. 29.
    Liu, H., Zhao, H., Wu, L., Liu, A., Zhao, F.-J., & Xu, W. (2017). Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytologist, 215, 687–698.  https://doi.org/10.1111/nph.14622.Google Scholar
  30. 30.
    Mishra, S., Mishra, A., & Küpper, H. (2017). Protein biochemistry and expression regulation of cadmium/zinc pumping ATPases in the Hyperaccumulator plants arabidopsis halleri and Noccaea caerulescens. Frontiers in Plant Science, 8, 835.  https://doi.org/10.3389/fpls.2017.00835.Google Scholar
  31. 31.
    Wong, C. K. E., & Cobbett, C. S. (2009). HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist, 181, 71–78.  https://doi.org/10.1111/j.1469-8137.2008.02638.x.Google Scholar
  32. 32.
    Barabasz, A., Wilkowska, A., Tracz, K., Ruszczyńska, A., Bulska, E., Mills, R. F., et al. (2013). Expression of HvHMA2 in tobacco modifies Zn-Fe-Cd homeostasis. Journal of Plant Physiology, 170(13), 1176–1186.  https://doi.org/10.1016/j.jplph.2013.03.018.Google Scholar
  33. 33.
    Boutigny, S., Sautron, E., Finazzi, G., Rivasseau, C., Frelet-Barrand, A., Pilon, M., et al. (2014). HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. Journal of Experimental Botany, 65(6), 1529–1540.  https://doi.org/10.1093/jxb/eru020.Google Scholar
  34. 34.
    Milner, M. J., Seamon, J., Craft, E., & Kochian, L. V. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64(1), 369–381.  https://doi.org/10.1093/jxb/ers315.Google Scholar
  35. 35.
    Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta, 1465, 190–198.Google Scholar
  36. 36.
    Vert, G., Briat, J.-F., & Curie, C. (2001). Arabidopsis IRT2gene encodes a root-periphery iron transporter. The Plant Journal, 26(2), 181–189.Google Scholar
  37. 37.
    Lin, Y. F., Liang, H. M., Yang, S. Y., Boch, A., Clemens, S., Chen, C. C., et al. (2009). Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 182(2), 392–404.  https://doi.org/10.1111/j.1469-8137.2009.02766.x.Google Scholar
  38. 38.
    Zelazny, E., & Vert, G. (2015). Regulation of iron uptake by IRT1: Endocytosis pulls the trigger. Molecular Plant, 8(7), 977–979.  https://doi.org/10.1016/j.molp.2015.03.006.Google Scholar
  39. 39.
    Papierniak, A., Kozak, K., Kendziorek, M., Barabasz, A., Palusinska, M., Tiuryn, J., et al. (2018). Contribution of NtZIP1-like to the regulation of Zn homeostasis. Frontiers in Plant Science, 9, 185.  https://doi.org/10.3389/fpls.2018.00185.Google Scholar
  40. 40.
    Kavitha, P. G., Kuruvilla, S., & Mathew, M. (2015). Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiology and Biochemistry, 97, 165–174.  https://doi.org/10.1016/j.plaphy.2015.10.005.Google Scholar
  41. 41.
    Fu, X.-Z., Zhou, X., Xing, F., Ling, L.-L., Chun, C.-P., Cao, L., et al. (2017). Genome-wide identification, cloning and functional analysis of the Zinc/Iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Frontiers in Plant Science, 8, 588.  https://doi.org/10.3389/fpls.2017.00588.Google Scholar
  42. 42.
    Lin, Y.-F., Hassan, Z., Talukdar, S., Schat, H., & Aarts, M. G. M. (2016). Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS ONE, 11(3), e0149750.  https://doi.org/10.1371/journal.pone.0149750.Google Scholar
  43. 43.
    Fasani, E., DalCorso, G., Varotto, C., Li, M., Visioli, G., Mattarozzi, M., et al. (2017). The MTP1 promoters from Arabidopsis halleri reveal cis-regulating elements for the evolution of metal tolerance. New Phytologist, 214(4), 1614–1630.  https://doi.org/10.1111/nph.14529.Google Scholar
  44. 44.
    Migocka, M., Maciaszczyk-Dziubinska, E., Malas, K., Posyniak, E., & Garbiec, A. (2019). Metal tolerance protein MTP6 affects mitochondrial iron and manganese homeostasis in cucumber. Journal of Experimental Botany, 70(1), 285–300.  https://doi.org/10.1093/jxb/ery342.Google Scholar
  45. 45.
    Migocka, M., Papierniak, A., Kosieradzka, A., Posyniak, E., Maciaszczyk-Dziubinska, E., et al. (2015). Cucumber metal tolerance protein CsMTP9 is a plasma membrane H+-coupled antiporter involved in the Mn2+ and Cd2+ efflux from root cells. The Plant Journal, 84(6), 1045–1058.  https://doi.org/10.1111/tpj.13056.Google Scholar
  46. 46.
    Li, X., Wu, Y., Li, B., He, W., Yang, Y., & Yang, Y. (2018). Genome-wide identification and expression analysis of the cation diffusion facilitator gene family in turnip under diverse metal ion stresses. Frontiers in Genetics, 9, 103.  https://doi.org/10.3389/fgene.2018.00103.Google Scholar
  47. 47.
    Das, N., Bhattacharya, S., & Maiti, M. K. (2016). Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiology and Biochemistry, 105, 297–309.Google Scholar
  48. 48.
    Wang, F. H., Qiao, K., Liang, S., Tian, S. Q., Tian, Y. B., Wang, H., et al. (2018). Triticum urartu MTP1: Its ability to maintain Zn2+ and Co2+ homeostasis and metal selectivity determinants. Plant Cell Reports, 37(12), 1653–1666.  https://doi.org/10.1007/s00299-018-2336-z.Google Scholar
  49. 49.
    León-Mediavilla, J., Senovilla, M., Montiel, J., Gil-Díez, P., Saez, Á., Kryvoruchko, I. S., et al. (2018). MtMTP2-facilitated zinc transport into intracellular compartments is essential for nodule development in Medicago truncatula. Frontiers in Plant Science, 9, 990.  https://doi.org/10.3389/fpls.2018.00990.Google Scholar
  50. 50.
    Migocka, M., Małas, K., Maciaszczyk-Dziubinska, E., Posyniak, E., Migdal, I., & Szczech, P. (2018). Cucumber golgi protein CsMTP5 forms a Zn-transporting heterodimer with high molecular mass protein CsMTP12. Plant Science, 277, 196–206.  https://doi.org/10.1016/j.plantsci.2018.09.011.Google Scholar
  51. 51.
    Ueno, D., Sasaki, A., Yamaji, N., Miyaji, T., Fujii, Y., Takemoto, Y., et al. (2015). A polarly localized transporter for efficient manganese uptake in rice. Nature Plants, 1, 15170.  https://doi.org/10.1038/nplants.2015.170.Google Scholar
  52. 52.
    Migocka, M., Papierniak, A., Maciaszczyk-Dziubińska, E., Poździk, P., Posyniak, E., Garbiec, A., et al. (2014). Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. Journal of Experimental Botany, 65(18), 5367–5384.  https://doi.org/10.1093/jxb/eru295.Google Scholar
  53. 53.
    Eroglu, S., Meier, B., von Wirén, N., & Peiter, E. (2016). The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in Arabidopsis. Plant Physiology, 170(2), 1030–1045.  https://doi.org/10.1104/pp.15.01194.Google Scholar
  54. 54.
    Tsunemitsu, Y., Genga, M., Okada, T., Yamaji, N., Ma, J. F., Miyazaki, A., et al. (2018). A member of cation diffusion facilitator family, MTP11, is required for manganese tolerance and high fertility in rice. Planta, 248(1), 231–241.  https://doi.org/10.1007/s00425-018-2890-1.Google Scholar
  55. 55.
    Takemoto, Y., Tsunemitsu, Y., Fujii-Kashino, M., Mitani-Ueno, N., Yamaji, N., Ma, J. F., et al. (2017). The tonoplast-localized transporter MTP8.2 contributes to manganese detoxification in the shoots and roots of Oryza sativa L. Plant and Cell Physiology, 58(9), 1573–1582.  https://doi.org/10.1093/pcp/pcx082.Google Scholar
  56. 56.
    Chu, H. H., Car, S., Socha, A. L., Hindt, M. N., Punshon, T., & Guerinot, M. L. (2017). The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds. Scientific Reports, 7(1), 11024.  https://doi.org/10.1038/s41598-017-11250-9.Google Scholar
  57. 57.
    Eroglu, S., Giehl, R. F. H., Meier, B., Takahashi, M., Terada, Y., Ignatyev, K., et al. (2017). Metal tolerance protein 8 mediates manganese homeostasis and iron reallocation during seed development and germination. Plant Physiology, 174(3), 1633–1647.  https://doi.org/10.1104/pp.16.01646.Google Scholar
  58. 58.
    Farthing, E. C., Menguer, P. K., Fett, J. P., & Williams, L. E. (2017). OsMTP11 is localised at the Golgi and contributes to Mn tolerance. Scientific Reports, 7(1), 15258.  https://doi.org/10.1038/s41598-017-15324-6.Google Scholar
  59. 59.
    Zhang, M., & Liu, B. (2017). Identification of a rice metaltolerance protein OsMTP11 as a manganese transporter. PLoS ONE, 12(4), e0174987.  https://doi.org/10.1371/journal.pone.0174987.Google Scholar
  60. 60.
    Ma, G., Li, J., Li, J., Li, Y., Gu, D., Chen, C., et al. (2018). OsMTP11, a trans-Golgi network localized transporter, is involved in manganese tolerance in rice. Plant Science, 274, 59–69.  https://doi.org/10.1016/j.plantsci.2018.05.011.Google Scholar
  61. 61.
    Migocka, M., Małas, K., Maciaszczyk-Dziubinska, E., Papierniak, A., Posyniak, E., & Garbiec, A. (2018). Cucumber metal tolerance protein 7 (CsMTP7) is involved in the accumulation of Fe in mitochondria under Fe excess. The Plant Journal, 95(6), 988–1003.  https://doi.org/10.1111/tpj.14006.Google Scholar
  62. 62.
    Pittman, J. K., & Hirschi, K. D. (2016). CAX-ing a wide net: Cation/H + transporters in metal remediation and abiotic stress signaling. Plant Biology (Stuttgart, Germany), 18(5), 741–749.  https://doi.org/10.1111/plb.12460.Google Scholar
  63. 63.
    Baliardini, C., Corso, M., & Verbruggen, N. (2016). Transcriptomic analysis supports the role of CATION EXCHANGER 1 in cellular homeostasis and oxidative stress limitation during cadmium stress. Plant Signaling & Behavior, 11(6), e1183861.  https://doi.org/10.1080/15592324.2016.1183861.Google Scholar
  64. 64.
    Baliardini, C., Meyer, C.-L., Salis, P., Saumitou-Laprade, P., & Verbruggen, N. (2015). CATION EXCHANGER1 cosegregates with cadmium tolerance in the metal hyperaccumulator Arabidopsis halleri and plays a role in limiting oxidative stress in Arabidopsis. Plant Physiology, 169, 549–559.Google Scholar
  65. 65.
    Qiao, K., Wang, F., Liang, S., Hu, Z., & Chai, T. (2019). Heterologous expression of TuCAX1a and TuCAX1b enhances Ca2+ and Zn2+ translocation in Arabidopsis. Plant Cell Reports.  https://doi.org/10.1007/s00299-019-02390-5.Google Scholar
  66. 66.
    Yuan, M., Li, X., Xiao, J., & Wang, S. (2011). Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biology, 11, 69.  https://doi.org/10.1186/1471-2229-11-69.Google Scholar
  67. 67.
    Perea-García, A., Garcia-Molina, A., Andrés-Colás, N., Vera-Sirera, F., Pérez-Amador, M. A., Puig, S., et al. (2013). Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling. Plant Physiology, 162(1), 180–194.  https://doi.org/10.1104/pp.112.212407.Google Scholar
  68. 68.
    Perea-García, A., Andrés-Bordería, A., Mayo de Andrés, S., Sanz, A., Davis, A. M., Davis, S. J., et al. (2016). Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana. Journal of Experimental Botany, 67(1), 391–403.  https://doi.org/10.1093/jxb/erv474.Google Scholar
  69. 69.
    Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. Journal of Biological Chemistry, 279(15), 15348–15355.Google Scholar
  70. 70.
    Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., Neumann, U., Dodani, S. C., Huijser, P., et al. (2013). The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions. Plant and Cell Physiology, 54, 1378–1390.  https://doi.org/10.1093/pcp/pct088.Google Scholar
  71. 71.
    Tiwari, M., Venkatachalam, P., Penarrubia, L., & Sahi, S. V. (2017). COPT2, a plasma membrane located copper transporter, is involved in the uptake of Au in Arabidopsis. Scientific Reports, 7(1), 11430.  https://doi.org/10.1038/s41598-017-11896-5.Google Scholar
  72. 72.
    Carrió-Seguí, A., Garcia-Molina, A., Sanz, A., & Penarrubia, L. (2015). Defective copper transport in the copt5 mutant affects cadmium tolerance. Plant and Cell Physiology, 56(3), 442–454.  https://doi.org/10.1093/pcp/pcu180.Google Scholar
  73. 73.
    Segond, D., Dellagi, A., Lanquar, V., Rigault, M., Patrit, O., Thomine, S., et al. (2009). NRAMP genes function in Arabidopsis thaliana resistance to Erwinia chrysanthemi infection. The Plant Journal, 58(2), 195–207.  https://doi.org/10.1111/j.1365-313X.2008.03775.x.Google Scholar
  74. 74.
    Lanquar, V., Lelièvre, F., Bolte, S., Hamès, C., Alcon, C., Neumann, D., et al. (2005). Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO Journal, 24(23), 4041–4051.Google Scholar
  75. 75.
    Bastow, E. L., Garcia de la Torre, V. S., Maclean, A. E., Green, R. T., Merlot, S., Thomine, S., et al. (2018). Vacuolar iron stores gated by NRAMP3 and NRAMP4 are the primary source of iron in germinating seeds. Plant Physiology, 177(3), 1267–1276.  https://doi.org/10.1104/pp.18.00478.Google Scholar
  76. 76.
    Lanquar, V., Ramos, M. S., Lelièvre, F., Barbier-Brygoo, H., Krieger-Liszkay, A., Krämer, U., et al. (2010). Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiology, 152(4), 1986–1999.  https://doi.org/10.1104/pp.109.150946.Google Scholar
  77. 77.
    Feng, Y., Wu, Y., Zhang, J., Meng, Q., Wang, Q., Ma, L., et al. (2018). Ectopic expression of SaNRAMP3 from Sedum alfredii enhanced cadmium root-to-shoot transport in Brassica juncea. Ecotoxicology and Environmental Safety, 156, 279–286.  https://doi.org/10.1016/j.ecoenv.2018.03.031.Google Scholar
  78. 78.
    Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., & Schroeder, J. I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National academy of Sciences of the United States of America, 97(9), 4991–4996.Google Scholar
  79. 79.
    Thomine, S., Lelièvre, F., Debarbieux, E., Schroeder, J. I., & Barbier-Brygoo, H. (2003). AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal, 34(5), 685–695.Google Scholar
  80. 80.
    Castaings, L., Caquot, A., Loubet, S., & Curie, C. (2016). The high-affinity metal transporters NRAMP1 and IRT1 team up to take up iron under sufficient metal provision. Scientific Reports, 6, 37222.  https://doi.org/10.1038/srep37222.Google Scholar
  81. 81.
    Peng, F., Wang, C., Cheng, Y., Kang, H., Fan, X., Sha, L., et al. (2018). Cloning and characterization of TpNRAMP3, a metal transporter from polish wheat (Triticum polonicum L.). Frontiers in Plant Science, 9, 1354.  https://doi.org/10.3389/fpls.2018.01354.Google Scholar
  82. 82.
    Tiwari, M., Sharma, D., Dwivedi, S., Singh, M., Tripathi, R. D., & Trivedi, P. K. (2014). Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant, Cell and Environment, 37(1), 140–152.  https://doi.org/10.1111/pce.12138.Google Scholar
  83. 83.
    Wang, C., Chen, X., Yao, Q., Long, D., Fan, X., Kang, H., et al. (2019). Overexpression of TtNRAMP6 enhances the accumulation of Cd in Arabidopsis. Gene, 696, 225–232.  https://doi.org/10.1016/j.gene.2019.02.008.Google Scholar
  84. 84.
    Ishimaru, Y., Takahashi, R., Bashir, K., Shimo, H., Senoura, T., Sugimoto, K., et al. (2012). Characterizing the role of rice NRAMP5 in Manganese, Iron and Cadmium Transport. Scientific Reports, 2, 286.  https://doi.org/10.1038/srep00286.Google Scholar
  85. 85.
    Peng, F., Wang, C., Zhu, J., Zeng, J., Kang, H., Fan, X., et al. (2018). Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. Planta, 247(6), 1395–1406.  https://doi.org/10.1007/s00425-018-2872-3.Google Scholar
  86. 86.
    Alejandro, S., Cailliatte, R., Alcon, C., Dirick, L., Domergue, F., Correia, D., et al. (2017). Intracellular distribution of manganese by the trans-Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. The Plant Cell, 29(12), 3068–3084.  https://doi.org/10.1105/tpc.17.00578.Google Scholar
  87. 87.
    Gao, H., Xie, W., Yang, C., Xu, J., Li, J., Wang, H., et al. (2018). NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. New Phytologist, 217(1), 179–193.  https://doi.org/10.1111/nph.14783.Google Scholar
  88. 88.
    Wu, H., Chen, C., Du, J., Liu, H., Cui, Y., Zhang, Y., et al. (2012). Co-overexpression FIT with AtbHLH38 or AtbHLH39 in arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiology, 158(2), 790–800.  https://doi.org/10.1104/pp.111.190983.Google Scholar
  89. 89.
    Xu, Z., Liu, X., He, X., Xu, L., Huang, Y., Shao, H., et al. (2017). The soybean basic Helix-Loop-Helix transcription factor ORG3-like enhances cadmium tolerance via increased iron and reduced cadmium uptake and transport from roots to shoots. Frontiers in Plant Science, 8, 1098.  https://doi.org/10.3389/fpls.2017.01098.Google Scholar
  90. 90.
    Yao, X., Cai, Y., Yu, D., & Liang, G. (2018). bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. Journal of Integrative Plant Biology, 60(8), 691–702.  https://doi.org/10.1111/jipb.12658.Google Scholar
  91. 91.
    Luo, J. S., Huang, J., Zeng, D. L., Peng, J. S., Zhang, G. B., Ma, H. L., et al. (2018). A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 9(1), 645.  https://doi.org/10.1038/s41467-018-03088-0.Google Scholar
  92. 92.
    Luo, J. S., Yang, Y., Gu, T. Y., Wu, Z. M., & Zhang, Z. H. (2019). The Arabidopsis defensin gene AtPDF25 mediates cadmium tolerance and accumulation. Plant, Cell and Environment.  https://doi.org/10.1111/pce.13592.Google Scholar
  93. 93.
    Luo, J. S., Gu, T. Y., Yang, Y., & Zhang, Z. H. (2019). A non–secreted plant defensin AtPDF26 conferred cadmium tolerance via its chelation in Arabidopsis. Plant Molecular Biology, 100(4–5), 561–569.  https://doi.org/10.1007/s11103-019-00878-y.Google Scholar
  94. 94.
    de Oliveira Carvalho, A., & Gomes, V. M. (2011). Plant defensins and defensin-like peptides - biological activities and biotechnologi-cal applications. Current Pharmaceutical Design, 17, 4270–4293.Google Scholar
  95. 95.
    Leszczyszyn, O. I., Imam, H. T., & Blindauer, C. A. (2013). Diversity and distribution of plant metallothioneins: A review of structure, properties and functions. Metallomics, 5(9), 1146.  https://doi.org/10.1039/c3mt00072a.Google Scholar
  96. 96.
    Peng, J. S., Ding, G., Meng, S., Yi, H. Y., & Gong, J. M. (2017). Enhanced metal tolerance correlates with heterotypic variation in SpMTL, a metallothionein-like protein from the hyperaccumulator Sedum plumbizincicola. Plant, Cell and Environment, 40(8), 1368–1378.Google Scholar
  97. 97.
    Zanella, L., Fattorini, L., Brunetti, P., Roccotiello, E., Cornara, L., D’Angeli, S., et al. (2016). Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta, 243, 605–622.  https://doi.org/10.1007/s00425-015-2428-8.Google Scholar
  98. 98.
    Zhang, X., Rui, H., Zhang, F., Hu, Z., Xia, Y., & Shen, Z. (2018). Overexpression of a functional Vicia sativa PCS1 homolog increases cadmium tolerance and phytochelatins synthesis in Arabidopsis. Frontiers in Plant Science, 9, 107.  https://doi.org/10.3389/fpls.2018.00107.Google Scholar
  99. 99.
    Park, J., Song, W.-Y., Ko, D., Eom, Y., Hansen, T. H., Schiller, M., et al. (2012). The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant, Cell and Environment, 39, 1112–1126.  https://doi.org/10.1111/j.1365-313X.2011.04789.x.Google Scholar
  100. 100.
    Sun, L., Ma, Y., Wang, H., Huang, W., Wang, X., Han, L., et al. (2018). Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar. Biochemical and Biophysical Research Communications, 497(4), 997–1002.  https://doi.org/10.1016/j.bbrc.2018.02.133.Google Scholar
  101. 101.
    Sharma, S. S., Dietz, K. J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell and Environment, 39(5), 1112–1126.  https://doi.org/10.1111/pce.12706.Google Scholar
  102. 102.
    Xu, Z., Ge, Y., Zhang, W., Zhao, Y., & Yang, G. (2018). The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC Plant Biology, 18, 19.  https://doi.org/10.1186/s12870-018-1231-7.Google Scholar
  103. 103.
    Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J., & Mizuno, T. (2011). AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant and Cell Physiology, 52(8), 1433–1442.  https://doi.org/10.1093/pcp/pcr089.Google Scholar
  104. 104.
    Barabasz, A., Palusińska, M., Papierniak, A., Kendziorek, M., Kozak, K., Williams, L. E., et al. (2019). Functional analysis of NtZIP4b and Zn status-dependent expression pattern of tobacco ZIP genes. Frontiers in Plant Science, 9, 1984.  https://doi.org/10.3389/fpls.2018.01984.Google Scholar
  105. 105.
    Kozak, K., Papierniak, A., Barabasz, A., Kendziorek, M., Palusińska, M., Williams, L. E., et al. (2019). NtZIP11, a new Zn transporter specifically upregulated in tobacco leaves by toxic Zn level. Environmental and Experimental Botany, 157, 69–78.  https://doi.org/10.1016/j.envexpbot.2018.09.020.Google Scholar
  106. 106.
    Li, S., Zhou, X., Li, H., Liu, Y., Zhu, L., Guo, J., et al. (2015). Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic arabidopsis. PLoS ONE, 10(8), e0136647.  https://doi.org/10.1371/journal.pone.0136647.Google Scholar
  107. 107.
    Feng, S., Tan, J., Zhang, Y., Liang, S., Xiang, S., Wang, H., et al. (2017). Isolation and characterization of a novel cadmium-regulated Yellow Stripe-Like transporter (SnYSL3) in Solanum nigrum. Plant Cell Reports, 36(2), 281–296.  https://doi.org/10.1007/s00299-016-2079-7.Google Scholar
  108. 108.
    Tan, M., Cheng, D., Yang, Y., Zhang, G., Qin, M., Chen, J., et al. (2017). Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC Plant Biology, 17(1), 194.  https://doi.org/10.1186/s12870-017-1143-y.Google Scholar
  109. 109.
    Tang, M., Mao, D., Xu, L., Li, D., Song, S., & Chen, C. (2014). Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings. BMC Genomics, 15, 835.  https://doi.org/10.1186/1471-2164-15-835.Google Scholar
  110. 110.
    Zhang, P., Wang, R., Ju, Q., Li, W., Tran, L. P., & Xu, J. (2019). The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiology, 180(1), 529–542.  https://doi.org/10.1104/pp.18.01380.Google Scholar
  111. 111.
    Zheng, X., Chen, L., & Li, X. (2018). Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Botanical Studies, 59(1), 22.  https://doi.org/10.1186/s40529-018-0238-6.Google Scholar
  112. 112.
    Korenkov, V., Hirschi, K., Crutchfield, J. D., & Wagner, G. J. (2007). Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta, 226(6), 1379–1387.  https://doi.org/10.1007/s00425-007-0577-0.Google Scholar
  113. 113.
    Weremczuk, A., Barabasz, A., Ruszczyńska, A., Bulska, E., & Antosiewicz, D. M. (2016). Determination the usefulness of AhHMA4p1:AhHMA4 expression in biofortification strategies. Water, Air, and Soil pollution, 227, 186.  https://doi.org/10.1007/s11270-016-2877-0.Google Scholar
  114. 114.
    Gong, X., Yin, L., Chen, J., & Guo, C. (2015). Overexpression of the iron transporter NtPIC1 in tobacco mediates tolerance to cadmium. Plant Cell Reports, 34(11), 1963–1973.  https://doi.org/10.1007/s00299-015-1843-4.Google Scholar
  115. 115.
    Kendziorek, M., Klimecka, M., Barabasz, A., Borg, S., Rudzka, J., Szczęsny, P., et al. (2016). Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes. BMC Genomics, 17, 625.  https://doi.org/10.1186/s12864-016-2990-x.Google Scholar
  116. 116.
    Fujiwara, T., Kawachi, M., Sato, Y., Mori, H., Kutsuna, N., Hasezawa, S., et al. (2015). A high molecular mass zinc transporter MTP12 forms a functional heteromeric complex with MTP5 in the Golgi in Arabidopsis thaliana. FEBS Journal, 282(10), 1965–1979.  https://doi.org/10.1111/febs.13252.Google Scholar
  117. 117.
    Wojas, S., Clemens, S., Hennig, J., Sklodowska, A., Kopera, E., Schat, H., et al. (2008). Overexpression of phytochelatin synthase in tobacco: distinctive effects of AtPCS1 and CePCS genes on plant response to cadmium. Journal of Experimental Botany, 59(8), 2205–2206.  https://doi.org/10.1093/jxb/ern092.Google Scholar
  118. 118.
    Wojas, S., Hennig, J., Plaza, S., Geisler, M., Siemianowski, O., Skłodowska, A., et al. (2009). Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environmental Pollution, 157(10), 2781–2789.  https://doi.org/10.1016/j.envpol.2009.04.024.Google Scholar
  119. 119.
    Agorio, A., Giraudat, J., Bianchi, M. W., Marion, J., Espagne, C., Castaings, L., et al. (2017). Phosphatidylinositol 3-phosphate –binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis. Proceedings of the National academy of Sciences of the United States of America, 114(16), E3354–E3363.  https://doi.org/10.1073/pnas.1702975114.Google Scholar
  120. 120.
    Hu, Y., Tian, S., Foyer, C. H., Hou, D., Wang, H., Zhou, W., et al. (2019). Efficient phloem transport significantly remobilizes cadmium from old to young organs in a hyperaccumulator Sedum alfredii. Journal of Hazardous Materials, 365, 421–429.  https://doi.org/10.1016/j.jhazmat.2018.11.034.Google Scholar
  121. 121.
    Yang, H. Q., Ma, X., Luo, S., Gao, J., Yang, X., & Feng, Y. (2018). SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii. Environmental and Experimental Botany, 155, 107–117.  https://doi.org/10.1016/j.envexpbot.2018.06.021.Google Scholar
  122. 122.
    Hanikenne, M., Talke, I. N., Haydon, M. J., Lanz, C., Nolte, A., Motte, P., et al. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453(7193), 391–395.Google Scholar
  123. 123.
    Shao, J. F., Xia, J., Yamaji, N., Shen, R. F., & Ma, J. F. (2018). Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. Journal of Experimental Botany, 69(10), 2743–2752.  https://doi.org/10.1093/jxb/ery107.Google Scholar
  124. 124.
    Yang, G., Wang, C., Wang, Y., Guo, Y., Zhao, Y., Yang, C., et al. (2016). Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of cadmium stress. Scientific Reports, 6, 18752.  https://doi.org/10.1038/srep18752.Google Scholar
  125. 125.
    Liu, D., Wang, Y., Guo, C., Cong, Q., Gong, X., & Zhang, H. (2016). Enhanced iron and zinc accumulation in genetically engineered wheat plants using sickle alfalfa (Medicago falcata L.) ferritin gene. Cereal Research Communications, 44, 1–11.  https://doi.org/10.1556/0806.43.2015.039.Google Scholar
  126. 126.
    Li, S., Zhou, X., Zhao, Y., Li, H., Liu, Y., Zhu, L., et al. (2016). Constitutive expression of the ZmZIP7 in arabidopsis alters metal homeostasis and increases Fe and Zn content. Plant Physiology and Biochemistry, 106, 1–10.  https://doi.org/10.1016/j.plaphy.2016.04.044.Google Scholar
  127. 127.
    Andrés-Bordería, A., Andrés, F., Garcia-Molina, A., Perea-García, A., Domingo, C., Puig, S., et al. (2017). Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). Plant Molecular Biology, 95(1–2), 17–32.  https://doi.org/10.1007/s11103-017-0622-8.Google Scholar
  128. 128.
    Siemianowski, O., Barabasz, A., Kendziorek, M., Ruszczyńska, A., Bulska, E., et al. (2014). AtHMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. Journal of Experimental Botany, 65, 1125–1139.  https://doi.org/10.1093/jxb/ert471.Google Scholar
  129. 129.
    Siemianowski, O., Mills, R. F., Williams, L. E., & Antosiewicz, D. M. (2011). Expression of the P1B-type ATPase AtHMA4 in tobacco modifies Zn and Cd root to shoot partitioning and metal tolerance. Plant Biotechnology Journal, 9, 64–74.  https://doi.org/10.1111/j.1467-7652.2010.00531.x.Google Scholar
  130. 130.
    Wu, T. Y., Gruissem, W., & Bhullar, N. K. (2019). Targeting intracellular transport combined with efficient uptake and storage significantly increases grain iron and zinc levels in rice. Plant Biotechnology Journal, 17, 9–20.  https://doi.org/10.1111/pbi.12943.Google Scholar
  131. 131.
    Georges, F., & Ray, H. (2017). Genome editing of crops: A renewed opportunity for food security. GM Crops Food, 8(1), 1–12.  https://doi.org/10.1080/21645698.2016.1270489.Google Scholar
  132. 132.
    Liu, C., & Moschou, P. N. (2018). Phenotypic novelty by CRISPR in plants. Developmental Biology, 435(2), 170–175.  https://doi.org/10.1016/j.ydbio.2018.01.015.Google Scholar
  133. 133.
    Nieves-Cordones, M., Mohamed, S., Tanoi, K., Kobayashi, N. I., Takagi, K., Vernet, A., et al. (2017). Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. The Plant Journal, 92(1), 43–56.  https://doi.org/10.1111/tpj.13632.Google Scholar
  134. 134.
    Yamaki, T., Otani, M., Ono, K., Mimura, T., Oda, K., Minamii, T., et al. (2017). Isolation and characterization of rice cesium transporter genes from a rice-transporter-enriched yeast expression library. Physiologia Plantarum, 160, 425–436.Google Scholar
  135. 135.
    Chavez, A., Tuttle, M., Pruitt, B. W., Ewen-Campen, B., Chari, R., Ter-Ovanesyan, D., et al. (2016). Comparative analysis of Cas9 activators across multiple species. Nature Methods, 13, 563–567.  https://doi.org/10.1038/nmeth.3871.Google Scholar
  136. 136.
    Dominguez, A. A., Lim, W. A., & Qi, L. S. (2016). Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology, 17, 5–15.  https://doi.org/10.1038/nrm.2015.2.Google Scholar
  137. 137.
    Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., Han, C. Y., Liu, B., et al. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 14, 327.  https://doi.org/10.1186/s12870-014-0327-y.Google Scholar
  138. 138.
    Lowder, L. G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T. F., et al. (2018). Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Molecular Plant, 11(2), 245–256.  https://doi.org/10.1016/j.molp.2017.11.010.Google Scholar
  139. 139.
    Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-Del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., et al. (2016). A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12, 10.  https://doi.org/10.1186/s13007-016-0101-2.Google Scholar
  140. 140.
    Gallego-Bartolomé, J., Gardiner, J., Liu, W., Papikian, A., Ghoshal, B., Kuo, H. Y., et al. (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National academy of Sciences of the United States of America, 115(9), E2125–E2134.  https://doi.org/10.1073/pnas.1716945115.Google Scholar
  141. 141.
    Lowder, L. G., Zhang, D., Baltes, N. J., Paul, J. W., Tang, X., Zheng, X., et al. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology, 169(2), 971–985.  https://doi.org/10.1104/pp.15.00636.Google Scholar
  142. 142.
    Tang, X., Lowder, L. G., Zhang, T., Malzahn, A. A., Zheng, X., Voytas, D. F., et al. (2017). A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 3, 17018.  https://doi.org/10.1038/nplants.2017.18.Google Scholar
  143. 143.
    Qiao, K., Gong, L., Tian, Y., Wang, H., & Chai, T. (2018). The metal-binding domain of wheat heavy metal ATPase2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis. Plant Cell Reports, 37(9), 1343–1352.  https://doi.org/10.1007/s00299-018-2316-3.Google Scholar
  144. 144.
    Schaaf, G., Honsbein, A., Meda, A. R., Kirchner, S., Wipf, D., & von Wirén, N. (2006). AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. Journal of Biological Chemistry, 281(35), 25532–25540.  https://doi.org/10.1074/jbc.M601062200.Google Scholar
  145. 145.
    Uraguchi, S., Kamiya, T., Sakamoto, T., Kasai, K., Sato, Y., Nagamura, Y., et al. (2011). Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National academy of Sciences of the United States of America, 108(52), 20959–20964.  https://doi.org/10.1073/pnas.1116531109.Google Scholar
  146. 146.
    Sasaki, A., Yamaji, N., Yokosho, K., & Ma, J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 24(5), 2155–2167.  https://doi.org/10.1105/tpc.112.096925.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elena S. Belykh
    • 1
    Email author
  • Tatiana A. Maystrenko
    • 1
  • Ilya O. Velegzhaninov
    • 1
    • 2
  1. 1.Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of SciencesSyktyvkarRussian Federation
  2. 2.Polytechnical Institute of Vyatka State UniversityKirovRussian Federation

Personalised recommendations