Advertisement

Functional Analysis of the Marigold (Tagetes erecta) Lycopene ε-cyclase (TeLCYe) Promoter in Transgenic Tobacco

  • Chunling Zhang
  • Yaqin Wang
  • Wenjing Wang
  • Zhe Cao
  • Qiang Fu
  • Manzhu Bao
  • Yanhong HeEmail author
Original paper
  • 9 Downloads

Abstract

Lycopene ε-cyclases (LCYEs) are key enzymes in carotenoid biosynthesis converting red lycopene to downstream lutein. The flowers of marigold (Tagetes erecta) have been superior sources to supply lutein. However, the transcriptional regulatory mechanisms of LCYe in lutein synthesis are still unclear in marigold. In this work, the expression pattern of the TeLCYe gene in marigold indicated that TeLCYe mainly expressed in floral organs. To gain a better understanding of the expression and regulatory mechanism of TeLCYe gene, the TeLCYe promoter was isolated, sequenced, and analyzed through bioinformatics tools. The results suggested that the sequence of TeLCYe promoter contained various putative cis-acting elements responsive to exogenous and endogenous factors. The full-length TeLCYe promoter and three 5′-deletion fragments were fused to the GUS reporter gene and transferred into tobacco to test the promoter activities. A strong GUS activity was observed in stems of seedlings, leaves of seedlings, middle stems, top leaves, petals, stamens, and stigmas in transgenic tobacco containing full-length TeLCYe promoter LP0-2086. Deletion of − 910 to − 429 bp 5′ to ATG significantly increased the GUS activity in chloroplast-rich tissues and floral organs, while deletion occurring from 1170 to 910 bp upstream ATG decreased the TeLCYe promoter strength in stems of seedlings, leaves of seedlings, top leaves and sepals. Functional characterization of the full-length TeLCYe promoter and its’ deletion fragments in stable transgenic tobacco indicated that the LP0-2086 contains some specific cis-acting elements, which might result in the high-level expression of in floral organs, and LP2-910 might contain some specific cis-acting elements which improved GUS activities in vegetable tissues.

Keywords

Marigold (Tagetes erectaLycopene ε-cyclase Promoter clone Transgenic tobacco GUS activity 

Notes

Acknowledgements

This research was supported by Grants from National Key R&D Program of China (2018YFD1000400) and the Fundamental Research Funds for the Central Universities (2662019PY072). We thank all past and present colleagues in our lab for constructive discussion and technical support.

Author contributions

Conceived and designed the experiments: YH, CZ, MB. Performed the experiments: CZ, YW, WW. Analyzed the data: CZ, ZC, QF. Plant cultivation: CZ, YW. Wrote the paper: CZ, YH. Revised the paper: CZ, YH, YW, WW, ZC, QF, MB.

Supplementary material

12033_2019_197_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
12033_2019_197_MOESM2_ESM.docx (23 kb)
Supplementary material 2 (DOCX 23 kb)

References

  1. 1.
    Galpaz, N., Ronen, G., Khalfa, Z., Zamir, D., & Hirschberg, J. (2006). A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. The Plant Cell, 18, 1947–1960.Google Scholar
  2. 2.
    Zhu, C., Sanahuja, G., Yuan, D., Farré, G., Arjó, G., Berman, J., et al. (2013). Biofortification of plants with altered antioxidant content and composition: Genetic engineering strategies. Plant Biotechnology Journal, 11, 129–141.Google Scholar
  3. 3.
    Demmig-Adams, B., & Adams, W. W., III. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1, 21–26.Google Scholar
  4. 4.
    Ruiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid biosynthesis in Arabidopsis: A colorful pathway. The Arabidopsis book/American Society of Plant Biologists, 10.Google Scholar
  5. 5.
    Han, H., Li, Y., & Zhou, S. (2008). Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnology Letters, 30, 1501–1507.Google Scholar
  6. 6.
    Cazzonelli, C. I. (2011). Carotenoids in nature: Insights from plants and beyond. Functional Plant Biology, 38, 833–847.Google Scholar
  7. 7.
    Miller, R., Owens, S. J., & Rørslett, B. (2011). Plants and colour: Flowers and pollination. Optics & Laser Technology, 43, 282–294.Google Scholar
  8. 8.
    Zhou, C., Zhao, D., Sheng, Y., Tao, J., & Yang, Y. (2011). Carotenoids in fruits of different persimmon cultivars. Molecules, 16, 624–636.Google Scholar
  9. 9.
    Maharaj, G. (2016). Color-mediated foraging by pollinators: A comparative study of two passionflower butterflies at Lantana camara.Google Scholar
  10. 10.
    Liu, C., Russell, R. M., & Wang, X. D. (2003). Exposing ferrets to cigarette smoke and a pharmacological dose of β-carotene supplementation enhance in vitro retinoic acid catabolism in lungs via induction of cytochrome P450 enzymes. The Journal of Nutrition, 133, 173–179.Google Scholar
  11. 11.
    Tang, G., Hu, Y., Yin, S. A., Wang, Y., Dallal, G. E., Grusak, M. A., et al. (2012). β-Carotene in golden rice is as good as β-carotene in oil at providing vitamin A to children. The American Journal of Clinical Nutrition, 96, 658–664.Google Scholar
  12. 12.
    Zhu, H., Chen, M., Wen, Q., & Li, Y. (2015). Isolation and characterization of the carotenoid biosynthetic genes LCYB, LCYE and CHXB from strawberry and their relation to carotenoid accumulation. Scientia Horticulturae, 182, 134–144.Google Scholar
  13. 13.
    Dwyer, J. H., Navab, M., Dwyer, K. M., Hassan, K., Sun, P., Shircore, A., et al. (2001). Oxygenated carotenoid lutein and progression of early atherosclerosis: The Los Angeles atherosclerosis study. Circulation, 103, 2922–2927.Google Scholar
  14. 14.
    Heber, D., & Lu, Q. Y. (2002). Overview of mechanisms of action of lycopene. Experimental Biology and Medicine, 227, 920–923.Google Scholar
  15. 15.
    Granado, F., Olmedilla, B., & Blanco, I. (2003). Nutritional and clinical relevance of lutein in human health. British Journal of Nutrition, 90, 487–502.Google Scholar
  16. 16.
    Chiu, C. J., & Taylor, A. (2007). Nutritional antioxidants and age-related cataract and maculopathy. Experimental Eye Research, 84, 229–245.Google Scholar
  17. 17.
    Krinsky, N. I., & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26, 459–516.Google Scholar
  18. 18.
    Landrum, J. T., Bone, R. A., Krinsky, N. I., Mayne, S. T., & Sies, H. (2004). Mechanistic evidence for eye diseases and carotenoids. Oxidative Stress and Disease, 13, 445–472.Google Scholar
  19. 19.
    Pogson, B., McDonald, K. A., Truong, M., Britton, G., & DellaPenna, D. (1996). Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. The Plant Cell, 8, 1627–1639.Google Scholar
  20. 20.
    Isaacson, T., Ronen, G., Zamir, D., & Hirschberg, J. (2002). Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell, 14, 333–342.Google Scholar
  21. 21.
    Kato, M., Ikoma, Y., Matsumoto, H., Sugiura, M., Hyodo, H., & Yano, M. (2004). Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiology, 134, 824–837.Google Scholar
  22. 22.
    Charles, A. D., Supinya, D., David, L., Paul, S., Volz, R. K., & Allan, A. C. (2012). Metabolic and gene expression analysis of apple (malus × domestica) carotenogenesis. Journal of Experimental Botany, 63, 4497–4511.Google Scholar
  23. 23.
    Castillo, R., Fernández, J. A., & Gómez-Gómez, L. (2005). Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiology, 139, 674–689.Google Scholar
  24. 24.
    Wisutiamonkul, A., Ampomah-Dwamena, C., Allan, A. C., & Ketsa, S. (2017). Carotenoid accumulation and gene expression during durian (Durio zibethinus) fruit growth and ripening. Scientia Horticulturae, 220, 233–242.Google Scholar
  25. 25.
    Cunningham, F. X., & Gantt, E. (1998). Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Biology, 49, 557–583.Google Scholar
  26. 26.
    Dalal, M., Chinnusamy, V., & Bansal, K. C. (2010). Isolation and functional characterization of lycopene β-cyclase (CYC-B) promoter from Solanum habrochaites. BMC Plant Biology, 10, 61.Google Scholar
  27. 27.
    Diretto, G., Tavazza, R., Welsch, R., Pizzichini, D., Mourgues, F., Papacchioli, V., et al. (2006). Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biology, 6, 13.Google Scholar
  28. 28.
    Cunningham, F. X., Jr., Chamovitz, D., Misawa, N., Gantt, E., & Hirschberg, J. (1993). Cloning and functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of β-carotene. FEBS Letters, 328, 130–138.Google Scholar
  29. 29.
    Cunningham, F. X., & Gantt, E. (2001). One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases. Proceedings of the National Academy of Sciences, 98, 2905–2910.Google Scholar
  30. 30.
    Cunningham, F. X., Pogson, B., Sun, Z., McDonald, K. A., DellaPenna, D., & Gantt, E. (1996). Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. The Plant Cell, 8, 1613–1626.Google Scholar
  31. 31.
    Niyogi, K. K. (1999). Photoprotection revisited: Genetic and molecular approaches. Annual Review of Plant Biology, 50, 333–359.Google Scholar
  32. 32.
    Fraser, P. D., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43, 228–265.Google Scholar
  33. 33.
    Giuliano, G., Tavazza, R., Diretto, G., Beyer, P., & Taylor, M. A. (2008). Metabolic engineering of carotenoid biosynthesis in plants. Trends in Biotechnology, 26, 139–145.Google Scholar
  34. 34.
    Cazzonelli, C. I., & Pogson, B. J. (2010). Source to sink: Regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15, 266–274.Google Scholar
  35. 35.
    Yu, B., Lydiate, D. J., Young, L. W., Schäfer, U. A., & Hannoufa, A. (2008). Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Research, 17, 573–585.Google Scholar
  36. 36.
    Guo, X., Yang, L., Hu, H., & Yang, L. (2009). Cloning and expression analysis of carotenogenic genes during ripening of autumn olive fruit (Elaeagnus umbellata). Journal of Agricultural and Food Chemistry, 57, 5334–5339.Google Scholar
  37. 37.
    Namitha, K. K., Archana, S. N., & Negi, P. S. (2011). Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum). Food and Function, 2, 168–173.Google Scholar
  38. 38.
    Shi, Y., Wang, R., Luo, Z., Jin, L., Liu, P., Chen, Q., et al. (2014). Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum. International Journal of Molecular Sciences, 15, 14766–14785.Google Scholar
  39. 39.
    Feng, F., Wang, G., Wang, Q., Yang, R., & Li, X. (2015). Functional analysis of the key carotenoid biosynthetic genes PSY1, LCYE and CrtRB1 in sweet corn. Journal of South China Agricultural University, 36, 36–42.Google Scholar
  40. 40.
    Li, Y., Chen, M., Zhu, H., Wen, Q., & Liu, J. (2017). Cloning and expression analysis of LCYE gene in Hibiscus esculentus. Journal of Agricultural Biotechnology, 25, 1600–1611.Google Scholar
  41. 41.
    Kishimoto, S., & Ohmiya, A. (2006). Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiologia Plantarum, 128, 436–447.Google Scholar
  42. 42.
    Kim, S. H., Kim, Y. H., Ahn, Y. O., Ahn, M. J., Jeong, J. C., Lee, H. S., et al. (2013). Downregulation of the lycopene ε-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli. Physiologia Plantarum, 147, 432–442.Google Scholar
  43. 43.
    Del Villar-Martínez, A. A., García-Saucedo, P. A., Carabez-Trejo, A., Cruz-Hernández, A., & Paredes-López, O. (2005). Carotenogenic gene expression and ultrastructural changes during development in marigold. Journal of Plant Physiology, 162, 1046–1056.Google Scholar
  44. 44.
    Ma, Q., Xu, X., Gao, Y., Wang, Q., & Zhao, J. (2008). Optimisation of supercritical carbon dioxide extraction of lutein esters from marigold (Tagetes erecta L.) with soybean oil as a co-solvent. International Journal of Food Science & Technology, 43, 1763–1769.Google Scholar
  45. 45.
    Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: Carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40, 173–289.Google Scholar
  46. 46.
    Park, Y. J., Park, S. Y., Valan Arasu, M., Al-Dhabi, N. A., Ahn, H. G., Kim, J. K., et al. (2017). Accumulation of carotenoids and metabolic profiling in different cultivars of Tagetes flowers. Molecules, 22, 313.Google Scholar
  47. 47.
    Moehs, C. P., Tian, L., Osteryoung, K. W., & DellaPenna, D. (2001). Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molecular Biology, 45, 281–293.Google Scholar
  48. 48.
    Ning, G., Xiao, X., Lv, H., Li, X., Zuo, Y., & Bao, M. (2012). Shortening tobacco life cycle accelerates functional gene identification in genomic research. Plant Biology, 14, 934–943.Google Scholar
  49. 49.
    Wang, Z., Ye, S., Li, J., Zheng, B., Bao, M., & Ning, G. (2011). Fusion primer and nested integrated PCR (FPNI-PCR): A new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnology, 11, 109.Google Scholar
  50. 50.
    Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.Google Scholar
  51. 51.
    Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.Google Scholar
  52. 52.
    Horsch, R. B., Fry, J., Hoffmann, N., Neidermeyer, J., Rogers, S. G., & Fraley, R. T. (1989). Leaf disc transformation. Plant Molecular Biology Manual (pp. 63–71). Dordrecht: Springer.Google Scholar
  53. 53.
    Jefferson, R. A. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.Google Scholar
  54. 54.
    Hua, W., Song, J., Li, C., & Wang, Z. (2012). Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza. Molecular Biology Reports, 39, 5775–5783.Google Scholar
  55. 55.
    Yang, Q., Yuan, D., Shi, L., Capell, T., Bai, C., Wen, N., et al. (2012). Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants. Transgenic Research, 21, 1043–1056.Google Scholar
  56. 56.
    Zeng, W., Huang, M., Wang, X., Ampomah-Dwamena, C., Xu, Q., & Deng, X. (2013). Identification and functional characterization of the promoter of a phytoene synthase from sweet orange (Citrus sinensis Osbeck). Plant Molecular Biology Reporter, 31, 64–74.Google Scholar
  57. 57.
    Wang, H., Ou, C. G., Zhuang, F. Y., & Ma, Z. G. (2014). The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves. Molecular Breeding, 34, 2065–2079.Google Scholar
  58. 58.
    Zhu, C., Yang, Q., Ni, X., Bai, C., Sheng, Y., Shi, L., et al. (2014). Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea. Physiologia Plantarum, 150, 493–504.Google Scholar
  59. 59.
    Eun, C. H., Kim, S. U., & Kim, I. J. (2015). The promoter from the Citrus unshiu carotenoid isomerase gene directs differential GUS expression in transgenic Arabidopsis. Molecular Breeding, 35, 116.Google Scholar
  60. 60.
    Lu, S., Zhang, Y., Zheng, X., Zhu, K., Xu, Q., & Deng, X. (2016). Molecular characterization, critical amino acid identification, and promoter analysis of a lycopene β-cyclase gene from citrus. Tree Genetics and Genomes, 12, 106.Google Scholar
  61. 61.
    von Lintig, J., Welsch, R., Bonk, M., Giuliano, G., Batschauer, A., & Kleinig, H. (1997). Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant Journal, 12, 625–634.Google Scholar
  62. 62.
    Simkin, A. J., Zhu, C. F., Kuntz, M., & Sandmann, G. (2003). Light-dark regulation of carotenoid biosynthesis in pepper (Capsicum annuum) leaves. Journal of Plant Physiology, 160, 439–443.Google Scholar
  63. 63.
    Welsch, R., Medina, J., Giuliano, G., Beyer, P., & Von Lintig, J. (2003). Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta, 216, 523–534.Google Scholar
  64. 64.
    Welsch, R., Wüst, F., Bär, C., Al-Babili, S., & Beyer, P. (2008). A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiology, 147, 367–380.Google Scholar
  65. 65.
    Toledo-Ortiz, G., Kiryu, Y., Kobayashi, J., Oka, Y., Kim, Y., Nam, H. G., et al. (2010). Subcellular sites of the signal transduction and degradation of phytochrome A. Plant and Cell Physiology, 51, 1648–1660.Google Scholar
  66. 66.
    Gao, H., Xu, J., Liu, X., Liu, B., & Deng, X. (2011). Light effect on carotenoids production and expression of carotenogenesis genes in Citrus callus of four genotypes. Acta Physiologiae Plantarum, 33, 2485–2492.Google Scholar
  67. 67.
    Rouster, J., Leah, R., Mundy, J., & Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant Journal, 11, 513–523.Google Scholar
  68. 68.
    Huttly, A. K., & Phillips, A. L. (1995). Gibberellin-regulated plant genes. Physiologia Plantarum, 95, 310–317.Google Scholar
  69. 69.
    Prabu, G., & Prasad, D. T. (2012). Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones. Plant Cell Reports, 31, 661–669.Google Scholar
  70. 70.
    Qin, Y., Wang, M., Tian, Y., He, W., Han, L., & Xia, G. (2012). Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Molecular Biology Reports, 39, 7183–7192.Google Scholar
  71. 71.
    Lee, J., Park, I., Lee, Z. W., Kim, S. W., Baek, N., Park, H. S., et al. (2013). Regulation of the major vacuolar Ca2+ transporter genes, by intercellular Ca2+ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea. Molecular Biology Reports, 40, 177–188.Google Scholar
  72. 72.
    Alok, A., Kumar, J., Thakur, N., Pandey, A., Pandey, A. K., Upadhyay, S. K., et al. (2016). Characterization and expression analysis of phytoene synthase from bread wheat (Triticum aestivum L.). PLoS ONE, 11, e0162443.Google Scholar
  73. 73.
    Lu, C. A., Lim, E. K., & Yu, S. M. (1998). Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. Journal of Biological Chemistry, 273, 10120–10131.Google Scholar
  74. 74.
    Liu, F., Vantoai, T., Moy, L. P., Bock, G., Linford, L. D., & Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in arabidopsis. Plant Physiology, 137, 1115–1129.Google Scholar
  75. 75.
    Nilsson, L., Müller, R., & Nielsen, T. H. (2010). Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiologia Plantarum, 139, 129–143.Google Scholar
  76. 76.
    An, G., Ebert, P. R., Yi, B. Y., & Choi, C. H. (1986). Both TATA box and upstream regions are required for the nopaline synthase promoter activity in transformed tobacco cells. Molecular and General Genetics, 203, 245–250.Google Scholar
  77. 77.
    Basi, G., Schmid, E., & Maundrell, K. (1993). TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene, 123, 131–136.Google Scholar
  78. 78.
    Hsu, C. Y., Creech, R. G., Jenkins, J. N., & Ma, D. P. (1999). Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Science, 143, 63–70.Google Scholar
  79. 79.
    Liu, L., Wei, J., Zhang, M., Zhang, L., Li, C., & Wang, Q. (2012). Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. Journal of Experimental Botany, 63, 5751.Google Scholar
  80. 80.
    Divya, P., Puthusseri, B., Savanur, M. A., Lokesh, V., & Neelwarne, B. (2018). Effects of methyl jasmonate and carotenogenic inhibitors on gene expression and carotenoid accumulation in coriander (Coriandrum sativum L.) foliage. Food Research International, 111, 11–19.Google Scholar
  81. 81.
    Liu, H., Meng, F., Miao, H., Chen, S., Yin, T., Hu, S., et al. (2018). Effects of postharvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chemistry, 263, 194–200.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chunling Zhang
    • 1
  • Yaqin Wang
    • 1
  • Wenjing Wang
    • 1
  • Zhe Cao
    • 2
  • Qiang Fu
    • 1
  • Manzhu Bao
    • 1
  • Yanhong He
    • 1
    Email author
  1. 1.Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
  2. 2.Crop Development Centre/Department of Plant SciencesUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations