Advertisement

High Conversion of d-Fructose into d-Allulose by Enzymes Coupling with an ATP Regeneration System

  • Qin Xiao
  • Junrong Niu
  • Hou Liu
  • Youcai LiuEmail author
  • Xingding ZhouEmail author
Original paper

Abstract

d-Allulose is a rare monosaccharide that exists in extremely small quantities in nature, and it is also hard to prepare at a large scale via chemical or enzyme synthetic route due to low conversion and downstream separation complexity. Using d-psicose epimerase and l-rhamnulose kinase, a method enabling high conversion of d-allulose from d-fructose without the need for a tedious isomer separation step was established recently. However, this method requires expensive ATP to facilitate the reaction. In the present study, an ATP regenerate system was developed coupling with polyphosphate kinase. In our optimized reaction with purified enzymes, the conversion rate of 99% d-fructose was achieved at the concentrations of 2 mM ATP, 5 mM polyphosphate, 20 mM d-fructose, and 20 mM Mg2+ when incubated at 50 °C and at pH 7.5. ATP usage can be reduced to 10% of the theoretical amount compared to that without the ATP regeneration system. A fed-batch mode was also studied to minimize the inhibitory effect of polyphosphate. The biosynthetic system reported here offers a potential and promising platform for the conversion of d-fructose into d-allulose at reduced ATP cost.

Keywords

ATP regeneration system d-Fructose d-Allulose l-Rhamnulose kinase Polyphosphate Polyphosphate kinase 

Notes

Acknowledgements

The above study was financially supported by the Ministry of Education of Singapore (Grant No. 17GAP002).

References

  1. 1.
    Zhang, W., Yu, S., Zhang, T., Jiang, B., & Mu, W. (2016). Recent advances in d-allulose: Physiological functionalities, applications, and biological production. Trends in Food Science & Technology, 54, 127–137.CrossRefGoogle Scholar
  2. 2.
    Park, C. S., Shin, K. C., & Oh, D. K. (2016). Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens. Journal of Bioscience and Bioengineering, 121, 186–190.CrossRefGoogle Scholar
  3. 3.
    Wenli, Z., Dan, F., Qingchao, X., Leon, Z., Bo, J., & Wanmeng, M. (2013). Characterization of a novel metal-dependent d-psicose 3-epimerase from Clostridium scindens 35704. PLoS ONE, 8, e62987.CrossRefGoogle Scholar
  4. 4.
    Zeng, Y., Zhang, X., Guan, Y., & Sun, Y. (2011). Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems. Journal of Food Science, 76, C398–C403.CrossRefGoogle Scholar
  5. 5.
    Li, C., Lin, J., Guo, Q., Zhang, C., Du, K., Lin, H., et al. (2018). D-psicose 3-epimerase secretory overexpression, immobilization, and d-psicose biotransformation, separation and crystallization. Journal of Chemical Technology & Biotechnology, 93(2), 350–357.CrossRefGoogle Scholar
  6. 6.
    Kim, H. J., Hyun, E. K., Kim, Y. S., Lee, Y. J., & Oh, D. K. (2006). Characterization of an Agrobacterium tumefaciens d-psicose 3-epimerase that converts d-fructose to d-psicose. Applied and Environment Microbiology, 72(2), 981–985.CrossRefGoogle Scholar
  7. 7.
    Yang, P., Zhu, X., Zheng, Z., Mu, D., Jiang, S., Luo, S., et al. (2018). Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a d-psicose-3-epimerase gene from Agrobacterium tumefaciens for d-allulose production. World Journal of Microbiology & Biotechnology, 34, 65.CrossRefGoogle Scholar
  8. 8.
    Zhang, L., Mu, W., Jiang, B., & Zhang, T. (2009). Characterization of d-tagatose-3-epimerase from Rhodobacter sphaeroides that converts d-fructose into d-psicose. Biotechnology Letters, 31, 857–862.CrossRefGoogle Scholar
  9. 9.
    Xing, Q. (2013). Characterization of a metal-dependent d-psicose 3-epimerase from a novel strain, Desmospora sp. 8437. Journal of Agriculture and Food Chemistry, 61, 11468–11476.CrossRefGoogle Scholar
  10. 10.
    Wen, L., Huang, K., Wei, M., Meisner, J., Liu, Y., & Garner, K. (2015). Facile enzymatic synthesis of ketoses. Angewandte Chemie, 54(43), 12654–12658.CrossRefGoogle Scholar
  11. 11.
    Rodionova, I. A., Yang, C., Li, X., Kurnasov, O. V., Best, A. A., Osterman, A. L., et al. (2012). Diversity and versatility of the Thermotoga maritima sugar kinome. Journal of Bacteriology, 194, 5552–5563.CrossRefGoogle Scholar
  12. 12.
    Wen, L., Huang, K., Liu, Y., & Wang, P. G. (2016). Facile enzymatic synthesis of phosphorylated ketopentoses. ACS Catalysis, 6, 1649–1654.CrossRefGoogle Scholar
  13. 13.
    Kuniyoshi, T., & Mikio, H. (1963). Method for the preparation of adenosine 5’-triphosphate: U.S. Patent No. 3,079,379. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  14. 14.
    Hara, K. Y., & Kondo, A. (2015). ATP regulation in bioproduction. Microbial Cell Factories, 14, 198.CrossRefGoogle Scholar
  15. 15.
    Lee, H. Y., Magotra, M., Wong, T. Y., Chakraborty, C., & Liu, J. K. (2012). ATP-dependent fructose uptake system in Deinococcus radiodurans. Applied Microbiology and Biotechnology, 93, 1241–1248.CrossRefGoogle Scholar
  16. 16.
    Iwamoto, S., Motomura, K., Shinoda, Y., Urata, M., Kato, J., Takiguchi, N., et al. (2007). Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate. Applied and Environment Microbiology, 73, 5676.CrossRefGoogle Scholar
  17. 17.
    An, C., Zhao, L., Wei, Z., & Zhou, X. (2017). Chemoenzymatic synthesis of 3’-phosphoadenosine-5’-phosphosulfate coupling with an ATP regeneration system. Applied Microbiology and Biotechnology, 101, 1–10.CrossRefGoogle Scholar
  18. 18.
    Andexer, J. N., & Richter, M. (2015). Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem A European Journal of Chemical Biology, 16, 380–386.CrossRefGoogle Scholar
  19. 19.
    Xing, Z., Hui, W., Bing, H., Li, Z., & Ye, Q. (2017). One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system. Journal of Biotechnology, 241, 163–169.CrossRefGoogle Scholar
  20. 20.
    Kameda, A., Shiba, T., Kawazoe, Y., Satoh, Y., Ihara, Y., Munekata, M., et al. (2001). A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. Journal of Bioscience and Bioengineering, 91, 557–563.CrossRefGoogle Scholar
  21. 21.
    Murata, K., Uchida, T., Kato, J., & Chibata, I. (1988). Polyphosphate kinase: Distribution, some properties and its application as an ATP regeneration system. Agricultural and Biological Chemistry, 52, 1471–1477.Google Scholar
  22. 22.
    Kuroda, A., & Kornberg, A. (1997). Polyphosphate kinase as a nucleoside diphosphate kinase in Escherichia coli and Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences USA, 94, 439–442.CrossRefGoogle Scholar
  23. 23.
    Noguchi, T., & Shiba, T. (1998). Use of Escherichia coli polyphosphate kinase for oligosaccharide synthesis. Bioscience, Biotechnology, and Biochemistry, 62, 1594–1596.CrossRefGoogle Scholar
  24. 24.
    Liu, S., Li, Y., & Zhu, J. (2016). Enzymatic production of l-theanine by γ-glutamylmethylamide synthetase coupling with an ATP regeneration system based on polyphosphate kinase. Process Biochemistry, 51, 1458–1463.CrossRefGoogle Scholar
  25. 25.
    Sato, M., Masuda, Y., Kirimura, K., & Kino, K. (2007). Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for D-amino acid dipeptide synthesis. Journal of Bioscience and Bioengineering, 103, 179–184.CrossRefGoogle Scholar
  26. 26.
    Rossolini, G. M., Thaller, M. C., Pezzi, R., & Satta, G. (1994). Identification of an Escherichia coli periplasmic acid phosphatase containing of a 27 kDa-polypeptide component. FEMS Microbiology Letters, 118, 167–173.CrossRefGoogle Scholar
  27. 27.
    Grueninger, D., & Schulz, G. E. (2006). Structure and reaction mechanism of L-rhamnulose kinase from Escherichia coli. Journal of Molecular Biology, 359, 787–797.CrossRefGoogle Scholar
  28. 28.
    Akiyama, M., Crooke, E., & Kornberg, A. (1992). The polyphosphate kinase gene of Escherichia coli. Isolation and sequence of the ppk gene and membrane location of the protein. Journal of Biological Chemistry, 267, 22556–22561.Google Scholar
  29. 29.
    Liu, Z., Zhang, J., Chen, X., & Wang, P. G. (2015). Combined biosynthetic pathway for de novo production of UDP-galactose: Catalysis with multiple enzymes immobilized on agarose beads. Chembiochem: A European Journal of Chemical Biology, 3, 348–355.CrossRefGoogle Scholar
  30. 30.
    Patel, S. N., Sharma, M., Lata, K., Singh, U., Kumar, V., Sangwa, R. S., et al. (2016). Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresource Technology, 216, 121–127.CrossRefGoogle Scholar
  31. 31.
    Choi, J. G., Ju, Y. H., Yeom, S. J., & Oh, D. K. (2011). Improvement in the thermostability of d-psicose 3-epimerase from Agrobacterium tumefaciens by random and site-directed mutagenesis. Applied and Environment Microbiology, 77, 7316–7320.CrossRefGoogle Scholar
  32. 32.
    Li, C., Zhang, C., Lin, J., Gao, L., Lin, H., & Lin, J. (2018). Enzymatic fructose removal from D-psicose bioproduction model solution and the system modeling and simulation. Journal of Chemical Technology & Biotechnology, 93, 1249–1260.CrossRefGoogle Scholar
  33. 33.
    Shimane, M., Sugai, Y., Kainuma, R., Natsume, M., & Kawaide, H. (2012). Mevalonate-dependent enzymatic synthesis of amorphadiene driven by an ATP-regeneration system using polyphosphate kinase. Bioscience, biotechnology, and biochemistry, 76, 1558–1560.CrossRefGoogle Scholar
  34. 34.
    Shiba, T., Tsutsumi, K., Ishige, K., & Noguchi, T. (2000). Inorganic polyphosphate and polyphosphate kinase: Their novel biological functions and applications (review). Biochemistry Biokhimiia, 65, 315–323.Google Scholar
  35. 35.
    Nakamichi, Y., Yoshioka, A., Kawai, S., & Murata, K. (2013). Conferring the ability to utilize inorganic polyphosphate on ATP-specific NAD kinase. Scientific Reports, 3, 274–274.CrossRefGoogle Scholar
  36. 36.
    Restiawaty, E., Iwasa, Y., Maya, S., Honda, K., Omasa, T., Hirota, R., et al. (2011). Feasibility of thermophilic adenosine triphosphate-regeneration system using Thermus thermophilus polyphosphate kinase. Process Biochemistry, 46, 1747–1752.CrossRefGoogle Scholar
  37. 37.
    Shaeri, J., Wright, I., Rathbone, E. B., Wohlgemuth, R., & Woodley, J. M. (2008). Characterization of enzymatic D-xylulose 5-phosphate synthesis. Biotechnology and Bioengineering, 101, 761–767.CrossRefGoogle Scholar
  38. 38.
    Cao, H., Li, C., Zhao, J., Wang, F., Tan, T., & Liu, L. (2018). Enzymatic production of glutathione coupling with an ATP regeneration system based on polyphosphate kinase. Applied Biochemistry and Biotechnology, 185, 385–395.CrossRefGoogle Scholar
  39. 39.
    Lindner, S. N., Niederholtmeyer, H., Schmitz, K., Schoberth, S. M., & Wendisch, V. F. (2010). Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: Biochemical properties and impact of ppK overexpression on lysine production. Applied Microbiology and Biotechnology, 87, 583–593.CrossRefGoogle Scholar
  40. 40.
    Meng, Q., Zhang, Y., Ju, X., Ma, C., Ma, P. D., Chen, J., et al. (2016). Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of Biotechnology, 226, 8–13.CrossRefGoogle Scholar
  41. 41.
    Pei, J., Chen, A., Zhao, L., Cao, F., Ding, G., & Xiao, W. (2017). One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system. Journal of Agriculture and Food Chemistry, 65, 6042–6048.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.School of Life Sciences and Chemical TechnologyNgee Ann PolytechnicSingaporeSingapore

Personalised recommendations