Advertisement

Molecular Cloning and Transient Expression of Recombinant Human PPARγ in HEK293T Cells Under an Inducible Tet-on System

  • Sonia Montero-Molina
  • Eder Arredondo-Espinoza
  • Jorge Solís-Estrada
  • Daniel Garzón-Cortés
  • Isaías Balderas-RenteríaEmail author
Original paper
  • 55 Downloads

Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) is involved in the regulation of lipid and glucose homeostasis and inflammation. PPARγ expression level has been widely studied in multiple tissues; however, there are few reports of preceding attempts to produce full-length human PPARγ (hPPARγ) in cellular models, and generally, expression level is not known or measurable. We propose an alternative strategy to express recombinant hPPARγ1, using a transient transfection with an inducible Tet-On 3G system where target and reporter gene were cloned in the same open reading frame. We transiently co-transfected human embryonic kidney 293T (HEK293T) cells with pTRE-ZsGreen1-IRES2-hPPARγ1 and pCMV-TET3G for inducible expression of hPPARγ1. Relative expression of the transcript was evaluated by RT-qPCR 48 h after transfection, obtaining a high expression level of hPPARγ (530-fold change, p < 0.002) in co-transfected HEK293T cells in the presence of doxycycline (1 μg/mL); also a significantly increased production of the reporter protein ZsGreen1 (3.6-fold change, p < 0.05) was determined by fluorescence analysis. These data indicated that HEK293T cells were successfully co-transfected and it could be an alternative model for hPPARγ expression in vitro. Additionally, this model will help to validate the quantification of inducible hPPARγ expression in vivo models for future research.

Keywords

Cellular model Inducible expression PPARγ Transfection qPCR 

Abbreviations

hPPARγ

Human peroxisome proliferator-activated receptor gamma

HEK293T

Human embryonic kidney 293T

Notes

Acknowledgements

SMM thanks CONACYT-MEXICO for the Grant [No. 307119] and also thank Elizeth Pioquinto-Avila for technical support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12033_2019_173_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. 1.
    Rosen, E. D., & Spiegelman, B. M. (2001). PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. Journal of Biological Chemistry, 276, 37731–37734.  https://doi.org/10.1074/jbc.R100034200.CrossRefGoogle Scholar
  2. 2.
    Berger, J., & Moller, D. E. (2002). The mechanisms of action of PPARs. Annual Review of Medicine, 53, 409–435.  https://doi.org/10.1146/annurev.med.53.082901.104018.CrossRefGoogle Scholar
  3. 3.
    Rizzo, B., & Fiorucci, S. (2006). PPARs and other nuclear receptors in inflammation. Current Opinion in Pharmacology, 6, 421–427.  https://doi.org/10.1016/j.coph.2006.03.012.CrossRefGoogle Scholar
  4. 4.
    Lehrke, M., & Lazar, M. (2005). The many faces of PPAR gamma. Cell, 123, 993–999.  https://doi.org/10.1016/j.cell.2005.11.026.CrossRefGoogle Scholar
  5. 5.
    Ahmadian, M., Suh, S., Hah, N., Liddle, C., Atkins, A., Downes, M., et al. (2013). PPARγ signaling and metabolism: the good, the bad and the future. Nature Medicine, 19, 557–566.  https://doi.org/10.1038/nm.3159.CrossRefGoogle Scholar
  6. 6.
    Zieleniak, A., Wojcik, M., & Wozniak, L. A. (2008). Structure and physiological functions of the human peroxisome. Arch Immunol Ther Exp, 56, 331–345.  https://doi.org/10.1007/s00005-008-0037-y.CrossRefGoogle Scholar
  7. 7.
    Glass, C. K., Rose, D. W., & Rosenfeld, M. G. (1997). Nuclear receptors coactivators. Current Opinion in Cell Biology, 9, 222–232.  https://doi.org/10.1016/S0955-0674(97)80066-X.CrossRefGoogle Scholar
  8. 8.
    Raspé, E., Schoonjans, K., Lefebvre, A. M., Saladin, R., Najib, J., Laville, M., et al. (1997). The organization, promoter analysis, and expression of the human PPARgamma gene. Journal of Biological Chemistry, 272, 18779–18789.  https://doi.org/10.1074/jbc.272.30.18779.CrossRefGoogle Scholar
  9. 9.
    Shim, J., Kim, B., Kim, B. H., Il, Y., & Kim, K. Y. (2010). The peroxisome proliferator-activated receptor gamma ligands, pioglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2), have antineoplastic effects against hepatitis B virus-associated hepatocellular carcinoma cells. International Journal of Oncology, 36, 223–231.  https://doi.org/10.3892/ijo_00000493.Google Scholar
  10. 10.
    Chan, S. H., Wu, K. L., Kung, P. S., & Chan, J. Y. (2010). Oral intake of rosiglitazone promotes a central antihypertensive effect via upregulation of peroxisome proliferator-activated receptor-gamma and alleviation of oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertension, 55, 1444–1453.  https://doi.org/10.1161/HYPERTENSIONAHA.109.149146.CrossRefGoogle Scholar
  11. 11.
    Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M., & Evans, R. M. (1995). 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell, 83, 803–812.  https://doi.org/10.1016/0092-8674(95)90193-0.CrossRefGoogle Scholar
  12. 12.
    Nissen, S. E., & Wolski, T. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New England Journal of Medicine, 356, 2457–2471.  https://doi.org/10.1056/NEJMoa072761.CrossRefGoogle Scholar
  13. 13.
    Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M., & Kliewer, S. A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). Journal of Biological Chemistry, 270, 12953–12956.  https://doi.org/10.1074/jbc.270.22.12953.CrossRefGoogle Scholar
  14. 14.
    Zhu, Z., Zheng, T., Chun, G., Homer, R. J., & Elias, J. A. (2002). Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Seminars in Cell & Developmental Biology, 13, 121–128.  https://doi.org/10.1016/S1084-9521(02)00018-6.CrossRefGoogle Scholar
  15. 15.
    Loew, R., Heinz, N., Hampf, M., Bujard, H., & Gossen, M. (2010). Improved Tet-responsive promoters with minimized background expression. BMC Biotechnology, 10, 81–93.  https://doi.org/10.1186/1472-6750-10-81.CrossRefGoogle Scholar
  16. 16.
    Sun, Y., Chen, X., & Xiao, D. (2007). Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochimica et Biophysica Sinica, 39, 235–246.  https://doi.org/10.1111/j.1745-7270.2007.00258.x.CrossRefGoogle Scholar
  17. 17.
    Elbrecht, A., Chen, Y., Cullinan, C. A., Hayes, N., Leibowitz, M., Moller, D. E., et al. (1996). Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochemical and Biophysical Research Communications, 224, 431–437.  https://doi.org/10.1006/bbrc.1996.1044.CrossRefGoogle Scholar
  18. 18.
    Relic, B., Benoit, V., Franchimont, N., Kaiser, M. J., Hauzeur, J. P., Gillet, P., et al. (2006). Peroxisome proliferator-activated receptor-gamma1 is dephosphorylated and degraded during BAY 11-7085-induced synovial fibroblast apoptosis. Journal of Biological Chemistry, 281, 22597–225604.  https://doi.org/10.1074/jbc.M512807200.CrossRefGoogle Scholar
  19. 19.
    Guo, F., Ren, X., Don, Y., Hu, X., Xu, D., Zhou, H., et al. (2016). Constitutive expression of PPARγ inhibits proliferation and migration of gastric cancer cells and down-regulates Wnt/β-Catenin signaling pathway downstream target genes TERT and ENAH. Gene, 584, 31–37.  https://doi.org/10.1016/j.gene.2016.03.003.CrossRefGoogle Scholar
  20. 20.
    Jin, D., Sun, J., Huang, J., Yu, X., Yu, A., He, Y., et al. (2015). Peroxisome proliferator-activated receptor γ enhances adiponectin secretion via up-regulating DsbA-L expression. Molecular and Cellular Endocrinology, 411, 97–104.  https://doi.org/10.1016/j.mce.2015.04.015.CrossRefGoogle Scholar
  21. 21.
    Camp, H. S., Wise, S. C., Hong, Y. H., Frankowski, C. L., Shen, X., Vanbogelen, R., et al. (2000). Differential activation of peroxisome proliferator-activated receptor-gamma by troglitazone and rosiglitazone. Diabetes, 49, 539–547.  https://doi.org/10.2337/diabetes.49.4.539.CrossRefGoogle Scholar
  22. 22.
    Ma, J., Zhang, T., Fang, N., Zou, Y., Gong, Q., Yu, L., et al. (2012). Establishment of a cell-based drug screening model for identifying agonists of human peroxisome proliferator-activated receptor gamma (PPARγ). Journal of Pharmacy and Pharmacology, 64, 719–726.  https://doi.org/10.1111/j.2042-7158.2012.01462.x.CrossRefGoogle Scholar
  23. 23.
    Thomas, P., & Smart, T. G. (2005). HEK293 cell line: a vehicle for the expression of recombinant proteins. Journal of Pharmacological and Toxicological Methods, 51, 187–200.  https://doi.org/10.1016/j.vascn.2004.08.014.CrossRefGoogle Scholar
  24. 24.
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.  https://doi.org/10.1006/meth.2001.1262.CrossRefGoogle Scholar
  25. 25.
    Tachibana, K., Kobayashi, Y., Tanaka, T., Tagami, M., Sugiyama, A., Katayama, T., et al. (2005). Gene expression profiling of potential peroxisome proliferator-activated receptor (PPAR) target genes in human hepatoblastoma cell lines inducibly expressing different PPAR isoforms. Nuclear Receptors, 3, 3.  https://doi.org/10.1186/1478-1336-3-3.CrossRefGoogle Scholar
  26. 26.
    Ju, Z., Su, M., Hong, J., Ullah, S., Kim, E. L., Zhao, C., et al. (2018). Design of PPAR-γ agonist based on algal metabolites and the endogenous ligand 15-deoxy-Δ12, 14-prostaglandin J2. European Journal of Medicinal Chemistry, 157, 1192–1201.  https://doi.org/10.1016/j.ejmech.2018.08.090.CrossRefGoogle Scholar
  27. 27.
    Rochel, N., Krucker, K., Coutos-Thévenot, L., Osz, J., Zhang, R., Guyon, E., et al. (2019). Recurrent activating mutations of PPARγ associated with luminal bladder tumors. Nature Communications, 10, 253–264.  https://doi.org/10.1038/s41467-018-08157-y.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad Autonoma de Nuevo Leon, Genetic Engineering and Genomics Laboratory, School of ChemistrySan Nicolas de los GarzaMexico
  2. 2.Biological Models Unit, Biomedical Research InstituteUniversidad Nacional Autonoma de MexicoMexico CityMexico

Personalised recommendations