Advertisement

Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity

  • Marzieh Varasteh Shams
  • Farhad Nazarian-FirouzabadiEmail author
  • Ahmad Ismaili
  • Reza Shirzadian-Khorramabad
Original Article
  • 42 Downloads

Abstract

Expression of strong antimicrobial peptides in plants is of great interest to combat a wide range of plant pathogens. To bring the Dermaseptin B1 (DrsB1) peptide to the intimate contact of the plant pathogens cell wall surface, the DrsB1 encoding sequence was fused to the C-terminal part of the two copies of the chitin-binding domain (CBD) of the Avr4 effector protein and used for Agrobacterium rhizogenes-mediated transformation. The expression of the recombinant protein in the tobacco hairy roots (HRs) was confirmed by molecular analysis. Antimicrobial activity analysis of the recombinant protein purified from the transgenic HRs showed that the (CBD)2-DrsB1 recombinant protein had a significant (p < 0.01) antimicrobial effect on the growth of different fungal and bacterial pathogens. The results of this study indicated that the recombinant protein had a higher antifungal activity against chitin-producing Alternaria alternata than Pythium spp. Scanning electron microscopy images demonstrated that the recombinant protein led to fungal hypha deformation, fragmentation, and agglutination of growing hypha, possibly by dissociating fungal cell wall components. In vitro evidences suggest that the expression of the (CBD)2-DrsB1 recombinant protein in plants by generating transgenic lines is a promising approach to produce disease-resistant plants, resistance to chitin-producing pathogenic fungi.

Keywords

Antimicrobial peptide Cladosporium fulvum Hairy root Dermaseptin CBD 

Notes

Supplementary material

12033_2019_153_MOESM1_ESM.pdf (234 kb)
Supplementary material 1 (PDF 234 KB)
12033_2019_153_MOESM2_ESM.pdf (195 kb)
Supplementary material 2 (PDF 195 KB)

References

  1. 1.
    Terra, I., Portugal, C., & Becker-Ritt, A. (2015). Plant antimicrobial peptides. The battle against microbial pathogens: Basic science, technological advances and educational programs (pp. 199–207). Spain: Formatex.Google Scholar
  2. 2.
    Marcos, J. F., Munoz, A., Perez-Paya, E., Misra, S., & Lopez-Garcia, B. (2008). Identification and rational design of novel antimicrobial peptides for plant protection. Annual Review of Phytopathology, 46, 273–301.CrossRefGoogle Scholar
  3. 3.
    Omardien, S., Brul, S., & Zaat, S. A. (2016). Antimicrobial activity of cationic antimicrobial peptides against gram-positives: Current progress made in understanding the mode of action and the response of bacteria. Frontiers in Cell and Developmental Biology, 4, 111.CrossRefGoogle Scholar
  4. 4.
    Alpizar, E., Dechamp, E., Lapeyre-Montes, F., Guilhaumon, C., Bertrand, B., Jourdan, C., Lashermes, P., & Etienne, H. (2008). Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): Conditions for long-term proliferation, and morphological and molecular characterization. Annals of Botany, 101(7), 929–940.CrossRefGoogle Scholar
  5. 5.
    Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature Biotechnology, 415, 389–395.Google Scholar
  6. 6.
    Holaskova, E., Galuszka, P., Frebort, I., & Oz, M. T. (2015). Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnology Advances, 33(6 Pt 2), 1005–1023.CrossRefGoogle Scholar
  7. 7.
    Nicolas, P., & Ladram, A. (2013) Dermaseptins. In Handbook of biologically active peptides (2nd ed., pp. 350–363). Amsterdam: ElsevierCrossRefGoogle Scholar
  8. 8.
    Osusky, M., Osuska, L., Kay, W., & Misra, S. (2005). Genetic modification of potato against microbial diseases: In vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theoretical and Applied Genetics, 111(4), 711–722.CrossRefGoogle Scholar
  9. 9.
    Xu, X., & Lai, R. (2015). The chemistry and biological activities of peptides from amphibian skin secretions. Chemical Reviews, 115(4), 1760–1846.CrossRefGoogle Scholar
  10. 10.
    Nicolas, P., & Amri, E., C. (2009). The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(8), 1537–1550.CrossRefGoogle Scholar
  11. 11.
    Galanth, C., Abbassi, F., Lequin, O., Ayala-Sanmartin, J., Ladram, A., Nicolas, P., & Amiche, M. (2009). Mechanism of antibacterial action of dermaseptin B2 interplay between helix-hinge-helix structure and membrane curvature strain. Biochemistry, 48, 313–327.CrossRefGoogle Scholar
  12. 12.
    Melo, M. N., Ferre, R., & Castanho, M. A. (2009). Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nature Reviews Microbiology, 7(3), 245–250.CrossRefGoogle Scholar
  13. 13.
    Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238–250.CrossRefGoogle Scholar
  14. 14.
    Findlay, B., Zhanel, G. G., & Schweizer, F. (2010). Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrobial Agents and Chemotherapy, 54(10), 4049–4058.CrossRefGoogle Scholar
  15. 15.
    Frederiksen, R. F., Paspaliari, D. K., Larsen, T., Storgaard, B. G., Larsen, M. H., Ingmer, H., Palcic, M. M., & Leisner, J. J. (2013). Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology, 159(Pt 5), 833–847.CrossRefGoogle Scholar
  16. 16.
    Manjeet, K., Purushotham, P., Neeraja, C., & Podile, A. R. (2013). Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases. Microbiological Research, 168(7), 461–468.CrossRefGoogle Scholar
  17. 17.
    Suetake, T., Tsuda, S., Kawabata, S., Miura, K., Iwanaga, S., Hikichi, K., Nitta, K., & Kawano, K. (2000). Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. Journal of Biological Chemistry, 275(24), 17929–17932.CrossRefGoogle Scholar
  18. 18.
    van den Burg, H. A., Harrison, S. J., Joosten, M. H., Vervoort, J., & de Wit, P. J. (2006). Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant-Microbe Interactions, 19(12), 1420–1430.CrossRefGoogle Scholar
  19. 19.
    Li, C., Blencke, H. M., Paulsen, V., Haug, T., & Stensvag, K. (2010). Powerful workhorses for antimicrobial peptide expression and characterization. Bioengineered Bugs, 1(3), 217–220.CrossRefGoogle Scholar
  20. 20.
    Kuo, Y.-C., Tan, C.-C., Ku, J.-T., Hsu, W.-C., Su, S.-C., Lu, C.-A., & Huang, L.-F. (2013). Improving pharmaceutical protein production in Oryza sativa. International Journal of Molecular Sciences, 14(5), 8719–8739.CrossRefGoogle Scholar
  21. 21.
    Chahardoli, M., Fazeli, A., & Ghabooli, M. (2018). Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiology and Biochemistry, 123, 414–421.CrossRefGoogle Scholar
  22. 22.
    Aleinein, R., Schäfer, H., & Wink, M. (2015). Rhizosecretion of the recombinant antimicrobial peptide ranalexin from transgenic tobacco hairy roots. RRJBS Phytopathol Gene Diseas, 1, 45–55.Google Scholar
  23. 23.
    Sharifi, S., Sattari, T. N., Zebarjadi, A., Majd, A., & Ghasempour, H. (2014). The influence of Agrobacterium rhizogenes on induction of hairy roots and ss-carboline alkaloids production in Tribulus terrestris L. Physiology and Molecular Biology of Plants, 20(1), 69–80.CrossRefGoogle Scholar
  24. 24.
    Moghadam, A., Niazi, A., Afsharifar, A., & Taghavi, S. M. (2016). Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in Nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS ONE, 11(7), e0159653.CrossRefGoogle Scholar
  25. 25.
    Carlín, A. P., Tafoya, F., Alpuche Solís, A. G., & Pérez-Molphe-Balch, E. (2015). Effects of different culture media and conditions on biomass production of hairy root cultures in six Mexican cactus species. In Vitro Cellular & Developmental Biology-Plant, 51(3), 332–339.CrossRefGoogle Scholar
  26. 26.
    Fischer, R., Stoger, E., Schillberg, S., Christou, P., & Twyman, R. M. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 7(2), 152–158.CrossRefGoogle Scholar
  27. 27.
    Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M. A., Zumstein, K., Garcha, J., Winte, S., Masson, H., & Inagaki, S. (2014). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology, 166(2), 455–469.CrossRefGoogle Scholar
  28. 28.
    Zhou, M.-L., Zhu, X.-M., Shao, J.-R., Tang, Y.-X., & Wu, Y.-M. (2011). Production and metabolic engineering of bioactive substances in plant hairy root culture. Applied Microbiology and Biotechnology, 90(4), 1229–1239.CrossRefGoogle Scholar
  29. 29.
    Skosyrev, V. S., Rudenko, N. V., Yakhnin, A. V., Zagranichny, V. E., Popova, L. I., Zakharov, M. V., & Gorokhovatsky, A. Y., & V., L. M. (2003). EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expression and Purification, 27, 55–62.CrossRefGoogle Scholar
  30. 30.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio agsays with tohaoco tissue cultures. Physiologia Plantarum, 15, 26.CrossRefGoogle Scholar
  31. 31.
    Joosten, M., Vogelsang, R., Cozijnsen, T. J., Verberne, M. C., & De Wit, P. (1997). The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable AVR4 elicitors. The Plant Cell, 9(3), 367–379.Google Scholar
  32. 32.
    Sulson, J. E., & Waterston, R. (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science, 282(5396), 2012–2018.CrossRefGoogle Scholar
  33. 33.
    Yevtushenko, D. P., & Misra, S. (2007). Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnology Journal, 5(6), 720–734.CrossRefGoogle Scholar
  34. 34.
    Doyle, J., & Doyle, J. (1987). CTAB DNA extraction in plants. Phytochemical Bulletin, 19, 11–15.Google Scholar
  35. 35.
    Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11(2), 113–116.CrossRefGoogle Scholar
  36. 36.
    Nicot, N., Hausman, J.-F., Hoffmann, L., & Evers, D. (2005). Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56(421), 2907–2914.CrossRefGoogle Scholar
  37. 37.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.CrossRefGoogle Scholar
  38. 38.
    Che, Y. Z., Li, Y. R., Zou, H. S., Zou, L. F., Zhang, B., & Chen, G. Y. (2011). A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin. Microbial Biotechnology, 4(6), 777–793.CrossRefGoogle Scholar
  39. 39.
    Roberts, W. K., & Selitrennikoff, C. P. (1986). Isolation and partial characterization of two antifungal proteins from barley. Biochimica et Biophysica Acta (BBA)-General Subjects, 880(2–3), 161–170.CrossRefGoogle Scholar
  40. 40.
    Feng, W., & Zheng, X. (2007). Essential oils to control Alternaria alternata in vitro and in vivo. Food Control, 18(9), 1126–1130.CrossRefGoogle Scholar
  41. 41.
    Mor, A., & Nicolas, P. (1994). Isolation and structure of novel defensive peptides from frog skin. European Journal of Biochemistry, 219(1-2), 145–154.CrossRefGoogle Scholar
  42. 42.
    Mor, A., Amiche, M., & Nicolas, P. (1994). Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: Relationship with adenoregulin. Biochemistry, 33(21), 6642–6650.CrossRefGoogle Scholar
  43. 43.
    Strahilevitz, J., Mor, A., Nicolas, P., & Shai, Y. (1994). Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Biochemistry, 33(36), 10951–10960.CrossRefGoogle Scholar
  44. 44.
    Gaume, A., Komarnytsky, S., Borisjuk, N., & Raskin, I. (2003). Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Reports, 21(12), 1188–1193.CrossRefGoogle Scholar
  45. 45.
    Osusky, M., Zhou, G., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2000). Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechnology, 18(11), 1162.CrossRefGoogle Scholar
  46. 46.
    Osusky, M., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2004). Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Research, 13(2), 181–190.CrossRefGoogle Scholar
  47. 47.
    Jashni, M. K., Dols, I. H., Iida, Y., Boeren, S., Beenen, H. G., Mehrabi, R., Collemare, J., & de Wit, P. J. (2015). Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence. Molecular Plant-Microbe Interactions, 28(9), 996–1008.CrossRefGoogle Scholar
  48. 48.
    Firouzabadi, F. N., Kok-Jacon, G. A., Vincken, J.-P., Ji, Q., Suurs, L. C., & Visser, R. G. (2007). Fusion proteins comprising the catalytic domain of mutansucrase and a starch-binding domain can alter the morphology of amylose-free potato starch granules during biosynthesis. Transgenic Research, 16(5), 645–656.CrossRefGoogle Scholar
  49. 49.
    Nazarian-Firouzabadi, F., Trindade, L. M., & Visser, R. G. (2012). Production of small starch granules by expression of a tandem-repeat of a family 20 starch-binding domain (SBD3-SBD5) in an amylose-free potato genetic background. Functional Plant Biology, 39(2), 146–155.CrossRefGoogle Scholar
  50. 50.
    Guillen, D., Santiago, M., Linares, L., Perez, R., Morlon, J., Ruiz, B., Sanchez, S., & Rodriguez-Sanoja, R. (2007). Alpha-amylase starch binding domains: Cooperative effects of binding to starch granules of multiple tandemly arranged domains. Applied and Environmental Microbiology, 73(12), 3833–3837.CrossRefGoogle Scholar
  51. 51.
    Reddy, K., Yedery, R., & Aranha, C. (2004). Antimicrobial peptides: Premises and promises. International Journal of Antimicrobial Agents, 24(6), 536–547.CrossRefGoogle Scholar
  52. 52.
    Yevtushenko, D. P., & Misra, S. (2012) Transgenic expression of antimicrobial peptides in plants: Strategies for enhanced disease resistance, improved productivity, and production of therapeutics. In ACS Symposium Series, 1095, pp. 445–458.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Agronomy and Plant Breeding Department, Faculty of AgricultureLorestan UniversityKhorramabadIran
  2. 2.Department of Agricultural Biotechnology, Faculty of Agricultural SciencesUniversity of GuilanRashtIran

Personalised recommendations