Advertisement

Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR–Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review

  • Johni Debbarma
  • Yogita N. Sarki
  • Banashree Saikia
  • Hari Prasanna Deka Boruah
  • Dhanawantari L. Singha
  • Channakeshavaiah Chikkaputtaiah
Review

Abstract

Abiotic stresses such as extreme heat, cold, drought, and salt have brought alteration in plant growth and development, threatening crop yield and quality leading to global food insecurity. Many factors plays crucial role in regulating various plant growth and developmental processes during abiotic stresses. Ethylene response factors (ERFs) are AP2/ERF superfamily proteins belonging to the largest family of transcription factors known to participate during multiple abiotic stress tolerance such as salt, drought, heat, and cold with well-conserved DNA-binding domain. Several extensive studies were conducted on many ERF family proteins in plant species through over-expression and transgenics. However, studies on ERF family proteins with negative regulatory functions are very few. In this review article, we have summarized the mechanism and role of recently studied AP2/ERF-type transcription factors in different abiotic stress responses. We have comprehensively discussed the application of advanced ground-breaking genome engineering tool, CRISPR/Cas9, to edit specific ERFs. We have also highlighted our on-going and published R&D efforts on multiplex CRISPR/Cas9 genome editing of negative regulatory genes for multiple abiotic stress responses in plant and crop models. The overall aim of this review is to highlight the importance of CRISPR/Cas9 and ERFs in developing sustainable multiple abiotic stress tolerance in crop plants.

Keywords

Ethylene response factor CRISPR/Cas9 technology Multiple abiotic stresses Negative regulatory genes Multiplex-multigene 

Abbreviations

ERF

Ethylene response factor

AP2

Apetala 2

SOD

Super oxide dismutase

CRISPR/Cas9

Clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9

CRELs

CRISPR-edited lines

Notes

Acknowledgements

The authors would like to acknowledge SERB-DST Govt. of India for the financial support to C. C. in the form of Ramanujan Fellowship (SB/S2/RJN-078/2014) and Early Career Research Award (ECR/2016/001288).

References

  1. 1.
    Mcguire, S., FAO, IFAD, & WFP. (2015). The state of food insecurity in the world: Meeting the 2015 international hunger targets: Taking stock of uneven progress. Advances in Nutrition, 6, 623–624.  https://doi.org/10.3945/an.115.009936.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amtmann, A., Bohnert, H. J., & Bressan, R. A. (2005). Abiotic stress and plant genome evolution. Search for new models. Plant Physiology, 138, 127–130.  https://doi.org/10.1104/pp.105.059972.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Altmann, T., Fiehn, O., Dormann, P., Kopka, J., Willmitzer, L., & Trethewey, R. N. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18(11), 1157–1161.CrossRefGoogle Scholar
  4. 4.
    Lal, R. (2016). Soil health and carbon management. Food and Energy Security.  https://doi.org/10.1002/fes3.96.CrossRefGoogle Scholar
  5. 5.
    Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition. Plant Physiology, 138, 882–897.  https://doi.org/10.1104/pp.105.062257.882.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Foyer, C. H. (2009). Redox regulation in photosynthetic organisms. Antioxidants & Redox Signaling, 11(4), 861–905.CrossRefGoogle Scholar
  7. 7.
    Petrov, V. D., & Van Breusegem, F. (2012). Hydrogen peroxide: A central hub for information flow in plant cells. AoB Plants.  https://doi.org/10.1093/aobpla/pls014.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Farooq, M., Wahid, A., Kobayashi, D. N., & Fujita, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212.  https://doi.org/10.1051/agro.CrossRefGoogle Scholar
  9. 9.
    Jin, L. G., & Liu, J. Y. (2008). Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirsutum). Plant Physiology and Biochemistry, 46(1), 46–53.  https://doi.org/10.1016/j.plaphy.2007.10.004.CrossRefPubMedGoogle Scholar
  10. 10.
    Araus, J. L. (2002). Plant breeding and drought in C3 cereals: What should we breed for? Annals of Botany, 89(7), 925–940.  https://doi.org/10.1093/aob/mcf049.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57(1), 781–803.  https://doi.org/10.1146/annurev.arplant.57.032905.105444.CrossRefPubMedGoogle Scholar
  12. 12.
    Shinozaki, K., & Yamaguchi-shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiology, 115(2), 327–334.CrossRefGoogle Scholar
  13. 13.
    Cheng, M.-C., Liao, P.-M., Kuo, W.-W., & Lin, T.-P. (2013). The Arabidopsis ethylene response factor 1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 162(3), 1566–1582.  https://doi.org/10.1104/pp.113.221911.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Johnson, P. R., & Ecker, J. R. (1998). The ethylene gas signal transduction pathway: A molecular perspective. Annual Review of Genetics, 32(1), 227–254.  https://doi.org/10.1146/annurev.genet.32.1.227.CrossRefPubMedGoogle Scholar
  15. 15.
    Nakano, T., Suzuki, K., Fujimura, T., & Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in rice and Arabidopsis. Plant Physiology, 140, 411–432.  https://doi.org/10.1104/pp.105.073783.currently.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu, Z. J., Li, X. H., Liu, Z. W., Li, H., Wang, Y. X., & Zhuang, J. (2015). Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis). Functional and Integrative Genomics, 15(6), 741–752.  https://doi.org/10.1007/s10142-015-0457-9.CrossRefPubMedGoogle Scholar
  17. 17.
    Gilmour, S. J., Sebolt, A. M., Salazar, M. P., Everard, J. D., & Thomashow, M. F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology, 1, 1854–1865.CrossRefGoogle Scholar
  18. 18.
    Ohme-Takagi, M., & Shinshi, H. (1990). Structure and expression of a tobacco fl-l,3-glucanase gene. Plant Molecular Biology, 15, 941–946.CrossRefGoogle Scholar
  19. 19.
    Hsieh, T., Lee, J., Yang, P., Chiu, L., Charng, Y., Wang, Y., & Chan, M. (2002). Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology, 129(3), 1086–1094.  https://doi.org/10.1104/pp.003442.1086.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    VISION—2020. Indian Council of Agricultural Research (ICAR), New Delhi, India. https://icar.org.in/files/vision-2020.pdf.
  21. 21.
    Paszkowski, J., & Baur, M. (1988). Gene targeting in plants. EMBO Journal, 7(13), 4021–4026.CrossRefGoogle Scholar
  22. 22.
    Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., et al. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 1140–1153.  https://doi.org/10.1111/mpp.12375.CrossRefPubMedGoogle Scholar
  23. 23.
    Baruah, I., Debbarma, J., Boruah, H. P. D., & Keshavaiah, C. (2017). The DEAD-box RNA helicases and multiple abiotic stresses in plants: A systematic review of recent advances and challenges. Plant Omics Journal, 10(05), 252–262.  https://doi.org/10.21475/poj.10.05.17.pne855.CrossRefGoogle Scholar
  24. 24.
    Chikkaputtaiah, C., Debbarma, J., Baruah, I., Prasanna, H., Boruah, D., & Curn, V. (2017). Molecular genetics and functional genomics of abiotic stress-responsive genes in oilseed rape (Brassica napus L.): A review of recent advances and future. Plant Biotechnology Reports.  https://doi.org/10.1007/s11816-017-0458-3.CrossRefGoogle Scholar
  25. 25.
    Marwein, R., Debbarma, J., Sarki, Y. N., Baruah, I., Saikia, B., Boruah, H. P. D., Velmurugan, N., & Chikkaputaiah, C. (2018). Genetic engineering/Genome editing approaches to modulate signaling processes in abiotic stress tolerance. In Plant Signaling Molecules, 1st edn, Amsterdam: Elsevier, ISBN: 9780128164518.Google Scholar
  26. 26.
    Maresca, M., Lin, V. G., Guo, N., & Yang, Y. (2013). Obligate ligation-gated recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Research.  https://doi.org/10.1101/gr.145441.112.23.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., & Nekrasov, V. (2015). Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 32, 76–84.  https://doi.org/10.1016/j.copbio.2014.11.007.CrossRefPubMedGoogle Scholar
  28. 28.
    Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Nekrasov, V., Sorek, R., Lawrence, C., et al. (2013). Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9(1), 39.  https://doi.org/10.1186/1746-4811-9-39.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33(1), 41–52.  https://doi.org/10.1016/j.biotechadv.2014.12.006.CrossRefPubMedGoogle Scholar
  30. 30.
    Xie, K., & Yang, Y. (2013). RNA-Guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 6(6), 1975–1983.  https://doi.org/10.1093/mp/sst119.CrossRefPubMedGoogle Scholar
  31. 31.
    Jacobs, J. Z., Ciccaglione, K. M., Tournier, V., & Zaratiegui, M. (2014). Implementation of the CRISPR–Cas9 system in fission yeast. Nature Communication, 5, 5344.  https://doi.org/10.1038/ncomms6344.CrossRefGoogle Scholar
  32. 32.
    Martin, G. B., Jacobs, T. B., Zhang, N., Patel, D., & Martin, G. B. (2017). Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiology, 174, 2023–2037.  https://doi.org/10.1104/pp.17.00489.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ohme-takagi, M., & Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell, 11, 173–182.CrossRefGoogle Scholar
  34. 34.
    Sharma, M. K., Kumar, R., Solanke, A., Sharma, R., Tyagi, A. K., & Sharma, A. K. (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Molecular Genetics and Genomics, 284, 455–475.  https://doi.org/10.1007/s00438-010-0580-1.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou, J., Tang, X., & Martin, G. B. (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO Journal, 16(11), 3207–3218.CrossRefGoogle Scholar
  36. 36.
    Okamuro, J. K., Caster, B., Villarroel, R., Van Montagu, M., & Jofuku, K. D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences, 94(13), 7076–7081.  https://doi.org/10.1073/pnas.94.13.7076.CrossRefGoogle Scholar
  37. 37.
    Weigel, D. (1995). The APETALA2 domain is related to a novel type of DNA binding domain. The Plant Cell Online, 7(4), 388–389.  https://doi.org/10.1105/tpc.7.4.388.CrossRefGoogle Scholar
  38. 38.
    Licausi, F., Ohme-takagi, M., & Perata, P. (2013). APETALA/ethylene responsive factor (AP2/ERF) transcription factor: Mediators of stress responses and developmental programs. New Phytology, 199, 639–649.CrossRefGoogle Scholar
  39. 39.
    Lee, J., Hong, J., Oh, S., Lee, S., Choi, D., & Kim, T. (2004). The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity condition in transgenic tobacco plants. Plant Molecular Biology, 1, 61–81.CrossRefGoogle Scholar
  40. 40.
    Shoji, T., Mishima, M., & Hashimoto, T. (2013). Divergent DNA-binding specificities of a group of ethylene response factor transcription factors involved in plant defense. Plant Physiology, 162(2), 977–990.  https://doi.org/10.1104/pp.113.217455.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hao, D., Ohme-Takagi, M., & Sarai, A. (1998). Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. Journal of Biological Chemistry, 273(41), 26857–26861.  https://doi.org/10.1074/jbc.273.41.26857.CrossRefPubMedGoogle Scholar
  42. 42.
    Sessa, G., Meller, Y., & Fluhr, R. (1995). A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-lb gene. Plant Molecular Biology, 1, 145–153.CrossRefGoogle Scholar
  43. 43.
    Shinshi, H., Usami, S., & Ohme-takagi, M. (1995). Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene, Plant Molecular Biology, 27, 923–924.CrossRefGoogle Scholar
  44. 44.
    Sato, F., Kitajima, S., Koyama, T., & Yamada, Y. (1996). Ethylene-induced gene expression of osmotin-like protein, a neutral isoform of tobacco PR-5, is mediated by the AGCCGCC m-sequence. Plant Cell Physiology, 37(3), 249–255.CrossRefGoogle Scholar
  45. 45.
    Wan, L., Wu, Y., Huang, J., Dai, X., Lei, Y., Yan, L., et al. (2014). Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Functional and Integrative Genomics, 14(3), 467–477.  https://doi.org/10.1007/s10142-014-0381-4.CrossRefPubMedGoogle Scholar
  46. 46.
    Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., & Ohme-takagi, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant Cell, 13, 1959–1968.CrossRefGoogle Scholar
  47. 47.
    Ohta, M., Ohme-takagi, M., & Shinshi, H. (2000). Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant Journal, 22, 29–38.CrossRefGoogle Scholar
  48. 48.
    Hiratsu, K., Matsui, K., Koyama, T., & Ohme-takagi, M. (2003). Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain in Arabidopsis. Plant Journal, 34, 733–739.CrossRefGoogle Scholar
  49. 49.
    Dubouzet, J. G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E. G., & Miura, S. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression, Plant J, 751–763.Google Scholar
  50. 50.
    Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., & Yamaguchi-shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communication, 1009, 998–1009.  https://doi.org/10.1006/bbrc.2001.6299.CrossRefGoogle Scholar
  51. 51.
    Kagaya, Y., Ohmiya, K., & Hattori, T. (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acid Research, 27(2), 470–478.CrossRefGoogle Scholar
  52. 52.
    Woo, H. R., Kim, J. H., Kim, J., Kim, J., Lee, U., Song, I., et al. (2010). The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany, 61(14), 3947–3957.  https://doi.org/10.1093/jxb/erq206.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Leivar, P., & Quail, P. H. (2011). PIFs: Pivotal components in a cellular signaling hub. Trends in Plant Science, 16(1), 19–28.  https://doi.org/10.1016/j.tplants.2010.08.003.CrossRefPubMedGoogle Scholar
  54. 54.
    DNAMAN 6.0 version. Lynnon Corporation DNAMAN-bioinformatics solutions https://www.lynnon.com/dnaman.html.
  55. 55.
    Lata, C., & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany.  https://doi.org/10.1093/jxb/err210.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang, Y., & Li, C. J. Y. (2012). CsICE1 and CsCBF1: Two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Reports, 31, 27–34.  https://doi.org/10.1007/s00299-011-1136-5.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang, X., Zhao, Q., Ma, C., Zhang, Z., Cao, H., & Kong, Y. (2013). Global transcriptome profiles of Camellia sinensis during cold acclimation Global transcriptome profiles of Camellia sinensis during cold acclimation, BMC Genomics, 14, 415.  https://doi.org/10.1186/1471-2164-14-415.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhang, W., Yang, G., Mu, D., Li, H., Zang, D., Xu, H., et al. (2016). An ethylene-responsive factor BpERF11 negatively modulates salt and osmotic tolerance in betula platyphylla. Scientific Reports, 6, 1–13.  https://doi.org/10.1038/srep23085.CrossRefGoogle Scholar
  59. 59.
    Wang, X., Han, H., Yan, J., Chen, F., & Wei, W. (2015). A new AP2/ERF transcription factor from the oil plant Jatropha curcas confers salt and drought tolerance to transgenic tobacco. Applied Biochemistry and Biotechnology, 176(2), 582–597.  https://doi.org/10.1007/s12010-015-1597-z.CrossRefPubMedGoogle Scholar
  60. 60.
    Cao, Y., Song, F., Goodman, R. M., & Zheng, Z. (2006). Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. Journal of Plant Physiology, 163(11), 1167–1178.  https://doi.org/10.1016/j.jplph.2005.11.004.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang, X., Zhang, Z., Chen, J., Chen, Q., Wang, X. C., & Huang, R. (2005). Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta, 222(3), 494–501.  https://doi.org/10.1007/s00425-005-1564-y.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang, G., Chen, M., Li, L., Xu, Z., Chen, X., Guo, J., & Ma, Y. (2009). Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought and diseases in transgenic tobacco. Journal of Experimental Botany, 60(13), 3781–3796.  https://doi.org/10.1093/jxb/erp214.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bo, H., Longguo, J., & Jinyuan, L. (2007). Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Science in China C, 50, 7–14.  https://doi.org/10.1007/s11427-007-0010-8.CrossRefGoogle Scholar
  64. 64.
    Zhang, G., Chen, M., Chen, X., Xu, Z., Guan, S., Li, L., & Li, A. (2008). Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). Journal of Experimental Botany, 59(15), 4095–4107.  https://doi.org/10.1093/jxb/ern248.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hu, L., & Liu, S. (2011). Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genetics and Molecular Biology, 633, 624–633.CrossRefGoogle Scholar
  66. 66.
    Zhu, Z., Shi, J., Xu, W., Li, H., He, M., Xu, Y., et al. (2013). Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. Journal of Plant Physiology.  https://doi.org/10.1016/j.jplph.2013.01.017.CrossRefPubMedGoogle Scholar
  67. 67.
    Degenkolbe, T., Do, P. T., Zuther, E., Repsilber, D., Walther, D., Hincha, D. K., & Kohl, K. I. (2009). Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Molecular Biology, 69, 133–153.  https://doi.org/10.1007/s11103-008-9412-7.CrossRefPubMedGoogle Scholar
  68. 68.
    Mart, J. P., Silva, H., Ledent, J. F., & Pinto, M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy, 26, 30–38.  https://doi.org/10.1016/j.eja.2006.08.003.CrossRefGoogle Scholar
  69. 69.
    Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., & Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceeding National Academy of Science USA, 104(49), 19631–19636.CrossRefGoogle Scholar
  70. 70.
    Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., & Masmoudi, K. (2011). Versatile proteins for complex mechanisms plant dehydrins and stress tolerance. Plant Signal Behaviour, 6, 1503–1509.  https://doi.org/10.4161/psb.6.10.17088.CrossRefGoogle Scholar
  71. 71.
    Choudhury, F. K., Rivero, R. M., Blumwald, E., & Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant Journal, 90, 856–867.  https://doi.org/10.1111/tpj.13299.CrossRefPubMedGoogle Scholar
  72. 72.
    Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh, R., Ismagul, A., et al. (2011). Improvement of stress tolerance of wheat and barley by modulation of expression of DREB⁄CBF factors. Plant Biotechnology.  https://doi.org/10.1111/j.1467-7652.2010.00547.x.CrossRefGoogle Scholar
  73. 73.
    Cheng, M.-C., Hsieh, E.-J., Chen, J.-H., Chen, H.-Y., & Lin, T.-P. (2012). Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response. Plant Physiology, 158(1), 363–375.  https://doi.org/10.1104/pp.111.189738.CrossRefPubMedGoogle Scholar
  74. 74.
    Fan, W., Hai, M., Guo, Y., Ding, Z., Tie, W., Ding, X., et al. (2016). The ERF transcription factor family in cassava: Genome-wide characterization and expression analyses against drought stress. Scientific Reports, 6, 1–12.  https://doi.org/10.1038/srep37379.CrossRefGoogle Scholar
  75. 75.
    Ren, M. Y., Feng, R. J., Shi, H. R., Lu, L. F., Yun, T. Y., Peng, M., et al. (2017). Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava. PLoS ONE, 12(5), 1–24.  https://doi.org/10.1371/journal.pone.0177621.CrossRefGoogle Scholar
  76. 76.
    Missihoun, T. D., Schmitz, J., & Bartels, D. (2011). Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. Planta.  https://doi.org/10.1007/s00425-010-1297-4.CrossRefPubMedGoogle Scholar
  77. 77.
    Chen, H. Y., Hsieh, E. J., Cheng, M. C., Chen, C. Y., Hwang, S. Y., & Lin, T. P. (2016). ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. The New Phytologist, 211(2), 599–613.  https://doi.org/10.1111/nph.13914.CrossRefPubMedGoogle Scholar
  78. 78.
    Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681.  https://doi.org/10.1146/annurev.arplant.59.032607.092911.CrossRefPubMedGoogle Scholar
  79. 79.
    Zhao, G., Mu, X., Wen, Z., Wang, F., & Gao, P. (2013). Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degradation and Development, 510, 499–510.  https://doi.org/10.1002/ldr.2246.CrossRefGoogle Scholar
  80. 80.
    Gupta, B., Huang, B., & Brunswick, N. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization, International Journal of Genomics.  https://doi.org/10.1155/2014/701596.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Zhang, M., Zhang, G. Q., Kang, H. H., Zhou, S. M., & Wang, W. (2017). TaPUB1, a putative E3 ligase gene from wheat, enhances salt stress tolerance in transgenic nicotiana benthamiana. Plant and Cell Physiology, 58(10), 1673–1688.  https://doi.org/10.1093/pcp/pcx101.CrossRefPubMedGoogle Scholar
  82. 82.
    Nakashima, K., Shinwari, Z. K., Sakuma, Y., Seki, M., & Miura, S. (2000). Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Molecular Biology, 42, l657–658.CrossRefGoogle Scholar
  83. 83.
    Dong, W., Ai, X., Xu, F., Quan, T., Liu, S., & Xia, G. (2012). Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene, 511(1), 38–45.  https://doi.org/10.1016/j.gene.2012.09.039.CrossRefPubMedGoogle Scholar
  84. 84.
    Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., & Oda, K. (2008). Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta.  https://doi.org/10.1007/s00425-007-0670-4.CrossRefPubMedGoogle Scholar
  85. 85.
    Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., & Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceeding National Academy of Science USA, 103, 18822–18827.CrossRefGoogle Scholar
  86. 86.
    Lim, C. J., Hwang, J. E., Chen, H., Hong, J. K., Yang, K. A., Choi, M. S., et al. (2007). Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochemical and Biophysical Research Communications, 362(2), 431–436.  https://doi.org/10.1016/j.bbrc.2007.08.007.CrossRefPubMedGoogle Scholar
  87. 87.
    Rene Richter, C., Behringer, C., Müller, I. S., & Schwechheimer, C. (2010). The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS. Genes Development, 24, 2093–2104.  https://doi.org/10.1101/gad.594910.et.CrossRefGoogle Scholar
  88. 88.
    Zhu, J. (2016). Review abiotic stress signaling and responses in plants. Cell, 167(2), 313–324.  https://doi.org/10.1016/j.cell.2016.08.029.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Mizoi, J., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 1819(2), 86–96.  https://doi.org/10.1016/j.bbagrm.2011.08.004.CrossRefPubMedGoogle Scholar
  90. 90.
    Fernando, N., Medina, J., & Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceeding National Academy of Science USA, 104, 21002–21007.Google Scholar
  91. 91.
    Jaglo, K. R., Kleff, S., Amundsen, K. L., Zhang, X., Haake, V., Zhang, J. Z., et al. (2001). Components of the Arabidopsis C-Repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species 1. Plant Physiology, 127, 910–917.  https://doi.org/10.1104/pp.010548.910.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant cell Physiology, 45(3), 346–350.CrossRefGoogle Scholar
  93. 93.
    Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Shinozaki, K., & Yamaguchi-shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiology, 47(1), 141–153.  https://doi.org/10.1093/pcp/pci230.CrossRefPubMedGoogle Scholar
  94. 94.
    Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., et al. (2011). ROS signaling: The new wave ? Trends in Plant Science, 16(6), 300–309.  https://doi.org/10.1016/j.tplants.2011.03.007.CrossRefPubMedGoogle Scholar
  95. 95.
    Chan, Z., Yokawa, K., Kim, W., & Song, C. (2016). ROS Regulation during Plant abiotic stress responses. Frontiers in Plant Science, 7, 1536.  https://doi.org/10.3389/fpls.2016.01536.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Wu, Q., Hu, Y., Sprague, S. A., Kakeshpour, T., Park, J., Nakata, P. A., et al. (2017). Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance. Biochemical and Biophysical Research Communications, 491(4), 1034–1039.  https://doi.org/10.1016/j.bbrc.2017.08.006.CrossRefPubMedGoogle Scholar
  97. 97.
    Yao, Y., He, R. J., Xie, Q. L., Zhao, X., Deng, X., He, J., et al. (2017). Ethylene response factor 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytol, 74, 1667–1681.  https://doi.org/10.1111/nph.14278.CrossRefGoogle Scholar
  98. 98.
    Lv, Y., Fu, S., Chen, S., Zhang, W., & Qi, C. (2016). Ethylene response factor BnERF2-like (ERF2.4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. Crop Journal, 4(3), 199–211.  https://doi.org/10.1016/j.cj.2016.01.004.CrossRefGoogle Scholar
  99. 99.
    Shen, Y. G., Zhang, W. K., He, S. J., Zhang, J. S., Liu, Q., & Chen, S. Y. (2003). An EREBP / AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theory of Applied Genetics, 106, 923–930.  https://doi.org/10.1007/s00122-002-1131-x.CrossRefGoogle Scholar
  100. 100.
    Hu, Y., Jiang, L., Wang, F., & Yu, D. (2013). Jasmonate Regulates the inducer of CBF expression—C-repeat binding factor/DRE binding factor 1 cascade and freezing tolerance in Arabidopsis. The Plant Cell, 25, 2907–2924.  https://doi.org/10.1105/tpc.113.112631.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Rashotte, A. M., & Goertzen, L. R. (2010). The CRF domain defines cytokinin response factor proteins in plants. BMC Plant Biology.  https://doi.org/10.1186/1471-2229-10-74.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Pre, M., Atallah, M., Champion, A., De Vos, M., Pieterse, C. M. J., & Memelink, J. (2008). The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiology, 147(3), 1347–1357.  https://doi.org/10.1104/pp.108.117523.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Klay, I., Pirrello, J., Riahi, L., Bernadac, A., Cherif, A., Bouzayen, M., & Bouzid, S. (2014). Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Scientific World Journal.  https://doi.org/10.1155/2014/167681.CrossRefPubMedGoogle Scholar
  104. 104.
    Liu, P., Sun, F., Gao, R., & Dong, H. (2012). RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Molecular Biology, 79(6), 609–622.  https://doi.org/10.1007/s11103-012-9936-8.CrossRefPubMedGoogle Scholar
  105. 105.
    Bleecker, A. B. (1999). Ethylene perception and signaling: An evolutionary perspective. Trends in Plant Science, 4(7), 269–274.  https://doi.org/10.1016/S1360-1385(99)01427-2.CrossRefPubMedGoogle Scholar
  106. 106.
    Chang, C., Kwok, S. F., Bleecker, A. B., & Meyerowitz, E. M. (1993). Arabidopsis ethylene-response of product similarity gene ETR1: Similarity of two-component regulator. Science, 262(5133), 539–544.CrossRefGoogle Scholar
  107. 107.
    Hua, J., Sakai, H., Nourizadeh, S., Chen, Q. G., Bleecker, A. B., Ecker, J. R., & Meyerowitz, E. M. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. The Plant Cell, 10(8), 1321–1332.CrossRefGoogle Scholar
  108. 108.
    Kendrick, M. D., & Chang, C. (2008). Ethylene signaling: New levels of complexity and regulation. Current Opinion in Plant Biology, 11(5), 479–485.  https://doi.org/10.1016/j.pbi.2008.06.011.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A., Ecker, J. R., Kieber, J. J., & Ecker, J. R. (1993). CTRI, a negative regulator of the ethylene pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell, 72(3), 427–441.  https://doi.org/10.1016/0092-8674(93)90119-B.CrossRefPubMedGoogle Scholar
  110. 110.
    Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., & Ecker, J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284(5423), 2148–2152.  https://doi.org/10.1126/science.284.5423.2148.CrossRefPubMedGoogle Scholar
  111. 111.
    Chao, Q., & Rothenberg, M. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ethylene-insensitive3 and related proteins. Cell, 89, 1133–1144. Retrieved from https://ac.els-cdn.com/S0092867400803001/1-s2.0-S0092867400803001-main.pdf?_tid=9f0ecb04-fe67-416b-a411-742ea47a44f8&acdnat=1532520228_1e1ba1cb3620e643c8b63e58251de566.
  112. 112.
    Solano, R., Stepanova, A., Chao, Q., & Ecker, J. R. (1998). Nuclear events in ethylene signaling a transcriptional cascade mediated by ethylene-insensitive 3 and ethylene response-factor 1. Genes Development, 12, 3703–3714.  https://doi.org/10.1101/gad.12.23.3703.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653–657.  https://doi.org/10.1126/science.1086391.CrossRefPubMedGoogle Scholar
  114. 114.
    Guo, H., & Ecker, J. R. (2003). Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell, 115(6), 667–677.  https://doi.org/10.1016/S0092-8674(03)00969-3.CrossRefPubMedGoogle Scholar
  115. 115.
    Ju, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., Garrett, W. M., Kessenbrock, G., Tucker, M. L., Cooper, B., Kieber, J. J., & Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences, 109(47), 19486–19491.  https://doi.org/10.1073/pnas.1214848109.CrossRefGoogle Scholar
  116. 116.
    Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., & Genschik, P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell, 115(6), 679–689.  https://doi.org/10.1016/S0092-8674(03)00968-1.CrossRefPubMedGoogle Scholar
  117. 117.
    Gagne, J. M., Smalle, J., Gingerich, D. J., Walker, J. M., Yoo, S.-D., Yanagisawa, S., & Vierstra, R. D. (2004). Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences, 101(17), 6803–6808.  https://doi.org/10.1073/pnas.0401698101.CrossRefGoogle Scholar
  118. 118.
    Lei, G., Shen, M., Li, Z. G., Zhang, B., Duan, K. X., Wang, N., et al. (2011). EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant, Cell and Environment, 34(10), 1678–1692.  https://doi.org/10.1111/j.1365-3040.2011.02363.x.CrossRefPubMedGoogle Scholar
  119. 119.
    Zhang, L., Li, Z., Quan, R., Li, G., Wang, R., & Huang, R. (2011). An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 Is important for the salt response in Arabidopsis. Plant Physiology, 157(2), 854–865.  https://doi.org/10.1104/pp.111.179028.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Yin, X.-R., Allan, A. C., Chen, K., & Ferguson, I. B. (2010). Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiology, 153(3), 1280–1292.  https://doi.org/10.1104/pp.110.157081.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Müller, M., & Munné-Bosch, S. (2015). Ethylene response factors: A key regulatory hub in hormone and stress signaling. Plant Physiology, 169(1), 32–41.  https://doi.org/10.1104/pp.15.00677.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Hu, Y., Jiang, Y., Han, X., Wang, H., Pan, J., & Yu, D. (2017). Jasmonate regulates leaf senescence and tolerance to cold stress: Crosstalk with other phytohormones. Journal of Experimental Botany, 68(6), 1361–1369.  https://doi.org/10.1093/jxb/erx004.CrossRefPubMedGoogle Scholar
  123. 123.
    Lorenzo, O., Piqueras, R., Sánchez-serrano, J. J., & Solano, R. (2003). Integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 15(1), 165–178.  https://doi.org/10.1105/tpc.007468.signaling.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science, 5, 1–7.  https://doi.org/10.3389/fpls.2014.00170.CrossRefGoogle Scholar
  125. 125.
    Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–851.CrossRefGoogle Scholar
  126. 126.
    Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J. K., & Shinozaki, K. (2004). Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology, 135, 1697–1709.  https://doi.org/10.1104/pp.104.039909.a.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Lee, S., Bee, S., Lee, S. J., & Kim, S. Y. (2015). AtERF15 is a positive regulator of ABA response. Plant Cell Reports, 34(1), 71–81.  https://doi.org/10.1007/s00299-014-1688-2.CrossRefPubMedGoogle Scholar
  128. 128.
    Zhang, Z., Wang, J., Zhang, R., & Huang, R. (2012). The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant Journal, 71(2), 273–287.  https://doi.org/10.1111/j.1365-313X.2012.04996.x.CrossRefPubMedGoogle Scholar
  129. 129.
    Jung, J., Won, S. Y., Suh, S. C., Kim, H., Wing, R., Jeong, Y., et al. (2007). The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta, 225(3), 575–588.  https://doi.org/10.1007/s00425-006-0373-2.CrossRefPubMedGoogle Scholar
  130. 130.
    Fujimoto, S. Y. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. The Plant Cell Online, 12(3), 393–404.  https://doi.org/10.1105/tpc.12.3.393.CrossRefGoogle Scholar
  131. 131.
    Huang, P. Y., Catinot, J., & Zimmerli, L. (2016). Ethylene response factors in Arabidopsis immunity. Journal of Experimental Botany, 67(5), 1231–1241.  https://doi.org/10.1093/jxb/erv518.CrossRefPubMedGoogle Scholar
  132. 132.
    Conaway, R. C., & Conaway, J. W. (2011). Function and regulation of the mediator complex. Current Opinion in Genetics and Development, 21(2), 225–230.  https://doi.org/10.1016/j.gde.2011.01.013.CrossRefPubMedGoogle Scholar
  133. 133.
    Cevik, V., Kidd, B. N., Zhang, P., Hill, C., Kiddle, S., Denby, K. J., et al. (2012). MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiology, 160(1), 541–555.  https://doi.org/10.1104/pp.112.202697.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Kagale, S., & Rozwadowski, K. (2011). EAR motif-mediated transcriptional repression in plants: An underlying mechanism for epigenetic regulation of gene expression. Epigenetics, 6(2), 141–146.  https://doi.org/10.4161/epi.6.2.13627.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Devos, K. M. (2000). Genome relationships: The grass model in current research. The Plant Cell, 12(5), 637–646.  https://doi.org/10.1105/tpc.12.5.637.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Yang, H. J., Shen, H., Chen, L., Xing, Y. Y., Wang, Z. Y., Zhang, J. L., & Hong, M. M. (2002). The OsEBP-89 gene of rice encodes a putative EREBP transcription factor and is temporally expressed in developing endosperm and intercalary meristem. Plant Molecular Biology, 50(3), 379–391.  https://doi.org/10.1023/A:1019859612791.CrossRefPubMedGoogle Scholar
  137. 137.
    Liu, D., Chen, X., Liu, J., Ye, J., & Guo, Z. (2012). The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 63, 3899–3911.  https://doi.org/10.1093/jxb/err313.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Yaish, M. W., El-Kereamy, A., Zhu, T., Beatty, P. H., Good, A. G., Bi, Y. M., & Rothstein, S. J. (2010). The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genetics.  https://doi.org/10.1371/journal.pgen.1001098.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Oh, S.-J., Kim, Y. S., Kwon, C.-W., Park, H. K., Jeong, J. S., & Kim, J.-K. (2009). Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiology, 150(3), 1368–1379.  https://doi.org/10.1104/pp.109.137554.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Quan, R., Hu, S., Zhang, Z., Zhang, H., Zhang, Z., & Huang, R. (2010). Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal, 8(4), 476–488.  https://doi.org/10.1111/j.1467-7652.2009.00492.x.CrossRefPubMedGoogle Scholar
  141. 141.
    Jisha, V., Dampanaboina, L., Vadassery, J., Mithöfer, A., Kappara, S., & Ramanan, R. (2015). Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS ONE, 10(6), 1–24.  https://doi.org/10.1371/journal.pone.0127831.CrossRefGoogle Scholar
  142. 142.
    Zhuang, J., Chen, J. M., Yao, Q. H., Xiong, F., Sun, C. C., Zhou, X. R., et al. (2011). Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Molecular Biology Reports, 38(2), 745–753.  https://doi.org/10.1007/s11033-010-0162-7.CrossRefPubMedGoogle Scholar
  143. 143.
    Golldack, D., Lüking, I., & Yang, O. (2011). Plant tolerance to drought and salinity: Stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports, 30(8), 1383–1391.  https://doi.org/10.1007/s00299-011-1068-0.CrossRefPubMedGoogle Scholar
  144. 144.
    Rong, W., Qi, L., Wang, A., Ye, X., Du, L., Liang, H., et al. (2014). The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal, 12(4), 468–479.  https://doi.org/10.1111/pbi.12153.CrossRefPubMedGoogle Scholar
  145. 145.
    Xu, Z. S., Xia, L. Q., Chen, M., Cheng, X. G., Zhang, R. Y., Li, L. C., et al. (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology, 65(6), 719–732.  https://doi.org/10.1007/s11103-007-9237-9.CrossRefPubMedGoogle Scholar
  146. 146.
    Zhou, M.-L., Tang, Y.-X., & Wu, Y.-M. (2012). Genome-wide analysis of AP2/ERF transcription factor family in Zea Mays. Current Bioinformatics, 7(3), 324–332.  https://doi.org/10.2174/157489312802460776.CrossRefGoogle Scholar
  147. 147.
    Ranum, P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105–112.  https://doi.org/10.1111/nyas.12396.CrossRefPubMedGoogle Scholar
  148. 148.
    Kizis, D. (2002). Maize DRE binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought responsive element in an ABA dependent pathway. The Plant Journal, 30(6), 679–689.CrossRefGoogle Scholar
  149. 149.
    Liu, J., Wang, F., Yu, G., Zhang, X., Jia, C., Qin, J., & Pan, H. (2015). Functional analysis of the maize C-repeat/DRE motif-binding transcription factor CBF3 promoter in response to abiotic stress. International Journal of Molecular Sciences, 16(6), 12131–12146.  https://doi.org/10.3390/ijms160612131.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Kimura, S., & Sinha, N. (2008). Tomato (Solanum lycopersicum): A model fruit-bearing crop. Cold Spring Harbor Protocols.  https://doi.org/10.1101/pdb.emo105.CrossRefPubMedGoogle Scholar
  151. 151.
    Lu, C., Li, Y., Chen, A., Li, L., Zuo, J., Tian, H., & Zhu, B. (2010). LeERF1 improves tolerance to drought stress in tomato (Lycopersicon esculentum) and activates downstream stress-responsive genes. African Journal of Biotechnology, 9, 6294–6300.  https://doi.org/10.5897/AJB09.1908.CrossRefGoogle Scholar
  152. 152.
    Zhang, Z., & Huang, R. (2010). Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Molecular Biology, 73(3), 241–249.  https://doi.org/10.1007/s11103-010-9609-4.CrossRefPubMedGoogle Scholar
  153. 153.
    Wang, Z., Zhang, N., Zhou, X., Fan, Q., Si, H., & Wang, D. (2015). Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum L.). Comptes Rendus, 338(4), 219–226.  https://doi.org/10.1016/j.crvi.2015.01.006.CrossRefGoogle Scholar
  154. 154.
    Huang, B., Jin, L. G., & Liu, J. Y. (2007). Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Science in China C, 50(1), 7–14.  https://doi.org/10.1007/s11427-007-0010-8.CrossRefGoogle Scholar
  155. 155.
    Ma, L., Hu, L., Fan, J., Amombo, E., Khaldun, A. B. M., Zheng, Y., & Chen, L. (2017). Cotton GhERF38 gene is involved in plant response to salt/drought and ABA. Ecotoxicology, 26(6), 841–854.  https://doi.org/10.1007/s10646-017-1815-2.CrossRefPubMedGoogle Scholar
  156. 156.
    Jin, L.-G., Li, H., & Liu, J.-Y. (2010). Molecular characterization of three ethylene responsive element binding factor genes from cotton. Journal of Integrative Plant Biology, 52(5), 485–495.  https://doi.org/10.1111/j.1744-7909.2010.00914.x.CrossRefPubMedGoogle Scholar
  157. 157.
    Ayarpadikannan, S., Chung, E., Kim, K., So, H.-A., Schraufnagle, K. R., & Lee, J.-H. (2014). RsERF1 derived from wild radish (Raphanus sativus) confers salt stress tolerance in Arabidopsis. Acta Physiologiae Plantarum, 36(4), 993–1008.  https://doi.org/10.1007/s11738-013-1478-4.CrossRefGoogle Scholar
  158. 158.
    Yu, Q. H., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., et al. (2017). CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Scientific Reports, 7(1), 1–9.  https://doi.org/10.1038/s41598-017-12262-1.CrossRefGoogle Scholar
  159. 159.
    Choo, Y., & Isalan, M. (2000). Advances in zinc finger engineering. Current Opinion in Structural Biology, 10(4), 411–416.  https://doi.org/10.1016/S0959-440X(00)00107-X.CrossRefPubMedGoogle Scholar
  160. 160.
    Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetic, 11(9), 636–646.  https://doi.org/10.1038/nrg2842.CrossRefGoogle Scholar
  161. 161.
    Qi, Y. (2015). High efficient genome modification by designed zinc finger nuclease. In F. Zhang & H. Puchta, Thomson J. (Eds.), Advances in new technology for targeted modification of plant genomes (pp. 39–53). New York: Springer.  https://doi.org/10.1007/978-1-4939-2556-8.CrossRefGoogle Scholar
  162. 162.
    Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333(6051), 1843–1846.  https://doi.org/10.1126/science.1204094.CrossRefPubMedGoogle Scholar
  163. 163.
    Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14(1), 49–55.  https://doi.org/10.1038/nrm3486.CrossRefPubMedGoogle Scholar
  164. 164.
    Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., et al. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31(8), 688–691.  https://doi.org/10.1038/nbt.2654.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Malzahn, A., Lowder, L., & Qi, Y. (2017). Plant genome editing with TALEN and CRISPR. Cell and Bioscience, 7(1), 1–18.  https://doi.org/10.1186/s13578-017-0148-4.CrossRefGoogle Scholar
  166. 166.
    Karkute, S. G., Singh, A. K., Gupta, O. P., Singh, P. M., & Singh, B. (2017). CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in Plant Science, 8, 1–6.  https://doi.org/10.3389/fpls.2017.01635.CrossRefGoogle Scholar
  167. 167.
    Sauer, N. J., Mozoruk, J., Miller, R. B., Warburg, Z. J., Walker, K. A., Beetham, P. R., et al. (2016). Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnology Journal, 14(2), 496–502.  https://doi.org/10.1111/pbi.12496.CrossRefPubMedGoogle Scholar
  168. 168.
    Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas system. Science, 339, 819–824.  https://doi.org/10.1126/science.1231143.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(8), 691–693.  https://doi.org/10.1038/nbt.2655.CrossRefPubMedGoogle Scholar
  170. 170.
    Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., et al. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12(6), 797–807.  https://doi.org/10.1111/pbi.12200.CrossRefPubMedGoogle Scholar
  171. 171.
    Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), 1–12.  https://doi.org/10.1093/nar/gkt780.CrossRefGoogle Scholar
  172. 172.
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947–951.  https://doi.org/10.1038/nbt.2969.CrossRefPubMedGoogle Scholar
  173. 173.
    Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated Cas9 system. Plant Physiology, 166, 1292–1297.  https://doi.org/10.1104/pp.114.247577.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Araki, M., & Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends in Plant Science, 20(3), 145–149.  https://doi.org/10.1016/j.tplants.2015.01.010.CrossRefPubMedGoogle Scholar
  175. 175.
    Pikaard, C. S., & Scheid, O. M. (2014). Epigenetic regulation in plants. Cold Spring Harbor Perspective Biology, 6, 1–32.  https://doi.org/10.1101/cshperspect.a019315.CrossRefGoogle Scholar
  176. 176.
    Open, C. G. E., Gao, X., Chen, J., Dai, X., Zhang, D., & Zhao, Y. (2016). An effective strategy for reliably isolating heritable and Cas9-free arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiology, 171, 1794–1800.  https://doi.org/10.1104/pp.16.00663.CrossRefGoogle Scholar
  177. 177.
    Wang, Y., Geng, L., Yuan, M., Wei, J., Jin, C., & Dep, I. (2017). Deletion of a target gene in Indica rice via CRISPR/Cas9. Plant Cell Reports.  https://doi.org/10.1007/s00299-017-2158-4.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Shan, Q., Wang, Y., Li, J., & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9(10), 2395–2410.  https://doi.org/10.1038/nprot.2014.157.CrossRefPubMedGoogle Scholar
  179. 179.
    Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., et al. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology.  https://doi.org/10.1038/nbt.3811.CrossRefPubMedGoogle Scholar
  180. 180.
    Cho, S., Yu, S., Park, J., Mao, Y., Zhu, J., & Lee, B. (2017). Accession-dependent CBF gene deletion by CRISPR/Cas system in Arabidopsis. Front Plant Science, 8, 1–11.  https://doi.org/10.3389/fpls.2017.01910.CrossRefGoogle Scholar
  181. 181.
    Osakabe, Y., Watanabe, T., Sugano, S. S., Ueta, R., Ishihara, R., Shinozaki, K., & Osakabe, K. (2016). Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Reports, 6(February), 26685.  https://doi.org/10.1038/srep26685.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Li, P., Li, Y. J., Zhang, F. J., Zhang, G. Z., Jiang, X. Y., Yu, H. M., & Hou, B. K. (2017). The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant Journal, 89(1), 85–103.  https://doi.org/10.1111/tpj.13324.CrossRefPubMedGoogle Scholar
  183. 183.
    Bi, H., & Yang, B. (2017). Gene editing with TALEN and CRISPR/Cas in rice. Progress in Molecular Biology and Translational Science, 149, 81–98.  https://doi.org/10.1016/bs.pmbts.2017.04.006.CrossRefPubMedGoogle Scholar
  184. 184.
    Li, J., Meng, X., Zong, Y., Chen, K., Zhang, H., & Liu, J. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants, 2(10), 1–6.  https://doi.org/10.1038/nplants.2016.139.CrossRefGoogle Scholar
  185. 185.
    My, T., Hoang, L., Tran, T. N., Kieu, T., Nguyen, T., Williams, B., Wurm, P., Bellaires, S., & Mundree, S. (2016). Improvement of salinity stress tolerance in rice: Challenges and opportunities, Agronomy, 6, 54.  https://doi.org/10.3390/agronomy6040054.CrossRefGoogle Scholar
  186. 186.
    Shen, C., Que, Z., Xia, Y., Tang, N., Li, D., He, R., & Cao, M. (2017). Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. Journal of Plant Biology, 60, 539–540.  https://doi.org/10.1007/s12374-016-0400-1.CrossRefGoogle Scholar
  187. 187.
    Mao, Y., Zhang, Z., Feng, Z., Wei, P., Zhang, H., & Zhu, J. (2016). Development of germ-line-specific CRISPR–Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol Journal.  https://doi.org/10.1111/pbi.12468.CrossRefGoogle Scholar
  188. 188.
    Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K., & Cigan, A. M. (2016). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications, 7, 1–7.  https://doi.org/10.1038/ncomms13274.CrossRefGoogle Scholar
  189. 189.
    Kim, H., & Kim, J. S. (2014). A guide to genome engineering with programmable nuclease. Nature Review Genetics, 15, 321–334.  https://doi.org/10.1038/nrg3686.CrossRefGoogle Scholar
  190. 190.
    Zhang, Y., Li, S., Xue, S., Yang, S., Huang, J., & Wang, L. (2018). Phylogenetic and CRISPR/Cas9 studies in deciphering the evolutionary trajectory and phenotypic impacts of rice ERECTA genes. Frontiers in Plant Science, 9, 1–11.  https://doi.org/10.3389/fpls.2018.00473.CrossRefGoogle Scholar
  191. 191.
    Kim, D., Alptekin, B., & Budak, H. (2018). CRISPR/Cas9 genome editing in wheat. Functional and Integrative Genomics, 18(1), 31–41.  https://doi.org/10.1007/s10142-017-0572-x.CrossRefPubMedGoogle Scholar
  192. 192.
    Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., et al. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Publishing Group, 7, 1–8.  https://doi.org/10.1038/ncomms12617.CrossRefGoogle Scholar
  193. 193.
    Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., et al. (2017). ARGOS8 variants generated by CRISPR–Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216.  https://doi.org/10.1111/pbi.12603.CrossRefPubMedGoogle Scholar
  194. 194.
    Wang, C., Ru, J., Liu, Y., Yang, J., & Li, M. (2018). The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. International Journal of Molecular Science.  https://doi.org/10.3390/ijms19092580.CrossRefPubMedGoogle Scholar
  195. 195.
    Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., & Shen, L. (2017). Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. Journal of Agricultural and Food Chemistry, 65(39), 8674–8682.  https://doi.org/10.1021/acs.jafc.7b02745.CrossRefPubMedGoogle Scholar
  196. 196.
    Li, R., Zhang, L., Wang, L., Chen, L., Zhao, R., Sheng, J., & Shen, L. (2018). Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. Journal of Agricultural and Food Chemistry, 66(34), 9042–9051.  https://doi.org/10.1021/acs.jafc.8b02177.CrossRefPubMedGoogle Scholar
  197. 197.
    Chen, X., Lu, X., Shu, N., Wang, S., Wang, J., Wang, D., et al. (2017). Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Scientific Reports, 7, 1–7.  https://doi.org/10.1038/srep44304.CrossRefGoogle Scholar
  198. 198.
    Dass, A., Abdin, M. Z., Reddy, V. S., & Leelavathi, S. (2017). Isolation and characterization of the dehydration stress-inducible GhRDL1 promoter from the cultivated upland cotton (Gossypium hirsutum). Journal of Plant Biochemistry and Biotechnology, 26(1), 113–119.  https://doi.org/10.1007/s13562-016-0369-3.CrossRefGoogle Scholar
  199. 199.
    Haque, E., Taniguchi, H., Hassan, M. M., Bhowmik, P., Karim, M. R., Śmiech, M., et al. (2018). Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent Progress, prospects, and challenges. Frontiers in Plant Science, 9, 1–12.  https://doi.org/10.3389/fpls.2018.00617.CrossRefGoogle Scholar
  200. 200.
    Ou, W., Mao, X., Huang, C., Tie, W., Yan, Y., Ding, Z., et al. (2018). Genome-wide identification and expression analysis of the KUP family under abiotic stress in cassava (Manihot esculenta Crantz). Frontiers in Physiology, 9, 1–11.  https://doi.org/10.3389/fphys.2018.00017.CrossRefGoogle Scholar
  201. 201.
    Miao, H., Sun, P., Liu, Q., Liu, J., Xu, B., & Jin, Z. (2017). The AGPase family proteins in banana: Genome-wide identification, phylogeny, and expression analyses reveal their involvement in the development, ripening, and abiotic/biotic stress responses. International Journal of Molecular Sciences, 18(8), 1–17.  https://doi.org/10.3390/ijms18081581.CrossRefGoogle Scholar
  202. 202.
    Chen, Y., Ma, J., Zhang, X., Yang, Y., Zhou, D., Yu, Q., et al. (2017). A novel non-specific lipid transfer protein gene from sugarcane (NsLTPs), obviously responded to abiotic stresses and signaling molecules of SA and MeJA. Sugar Tech, 19(1), 17–25.  https://doi.org/10.1007/s12355-016-0431-4.CrossRefGoogle Scholar
  203. 203.
    Su, Y., Wang, Z., Liu, F., Li, Z., Peng, Q., Guo, J., et al. (2016). Isolation and characterization of ScGluD2, a new sugarcane beta-1,3-glucanase D family gene induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 stresses. Frontiers in Plant Science, 7, 1–14.  https://doi.org/10.3389/fpls.2016.01348.CrossRefGoogle Scholar
  204. 204.
    Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z. N. B., Atabaki, N., Sahebi, M., et al. (2017). Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environmental and Experimental Botany, 134, 33–44.  https://doi.org/10.1016/j.envexpbot.2016.10.015.CrossRefGoogle Scholar
  205. 205.
    Fang, H., Meng, Q., Zhang, H., & Huang, J. (2016). Knock-down of RING finger gene confers cold tolerance. Bioengineered, 7, 39–45.  https://doi.org/10.1080/21655979.2015.1131368.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics, 46, 505–529.  https://doi.org/10.1146/annurev-biophys-062215-010822.CrossRefPubMedGoogle Scholar
  207. 207.
    Xu, R., Qin, R., Li, H., Li, D., Li, L., Wei, P., & Yang, J. (2017). Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnology Journal, 15(6), 713–717.  https://doi.org/10.1111/pbi.12669.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Arya, S. K., & Roy, B. K. (2011). Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). Journal of Environmental Biology, 32, 707–711.PubMedGoogle Scholar
  209. 209.
    Yu, Y., Yang, D., Zhou, S., Gu, J., Wang, F., Dong, J., & Huang, R. (2017). The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma, 254(1), 401–408.  https://doi.org/10.1007/s00709-016-0960-4.CrossRefPubMedGoogle Scholar
  210. 210.
    Mishra, R., Joshi, R. K., & Zhao, K. (2018). Genome editing in rice: Recent advances, challenges, and future implications. Frontiers in Plant Science.  https://doi.org/10.3389/fpls.2018.01361.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., et al. (2016). Enhanced rice blast resistance by CRISPR/Cas9-Targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE, 11(4), 1–18.  https://doi.org/10.1371/journal.pone.0154027.CrossRefGoogle Scholar
  212. 212.
    Ma, S., Chang, J., Wang, X., Liu, Y., Zhang, J., Lu, W., Gao, J., Shi, R., Zhao, P., & Xia, Q. (2014). CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori. Scientific Reports, 4(4489), 1–6.  https://doi.org/10.1038/srep04489.CrossRefGoogle Scholar
  213. 213.
    Li, Y., Su, X., Zhang, B., Huang, Q., Zhang, X., & Huang, R. (2009). Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree Physiology, 29(2), 273–279.  https://doi.org/10.1093/treephys/tpn025.CrossRefPubMedGoogle Scholar
  214. 214.
    Jain, M. (2015). Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Frontiers in Plant Science, 6, 2011–2014.  https://doi.org/10.3389/fpls.2015.00375.CrossRefGoogle Scholar
  215. 215.
    Li, W., Teng, F., Li, T., & Zhou, Q. (2013). Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 31(8), 684–686.  https://doi.org/10.1038/nbt.2652.CrossRefPubMedGoogle Scholar
  216. 216.
    Cong, L., Ran, F., Cox, D., Lin, S., & Barretto, R. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.  https://doi.org/10.1038/nbt1319.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biotechnology Group, Biological Sciences and Technology DivisionCSIR-NEISTJorhatIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)CSIR-NEISTJorhatIndia
  3. 3.Department of Agricultural BiotechnologyAssam Agriculture UniversityJorhatIndia

Personalised recommendations