Molecular Biotechnology

, Volume 61, Issue 2, pp 102–110 | Cite as

Expression of Recombinant PfCelTOS Antigen in the Chloroplast of Chlamydomonas reinhardtii and its Potential Use in Detection of Malaria

  • Shabnam Shamriz
  • Hamideh OfoghiEmail author
Original Paper


Malaria is a serious but preventable and treatable infectious disease that is found in over 100 countries around the world. Correct and rapid diagnosis of malaria infection can rescue the patient of getting sicker and reduces the risk of disease spreading among humans. Chlamydomonas reinhardtii chloroplast is an attractive platform for expressing malaria antigens because it is capable of folding complex proteins, including those requiring disulfide bond formation, while lack the ability to glycosylate proteins; a valuable quality of any malaria protein expression system, since the Plasmodium parasite lacks N-linked glycosylation machinery. In this study, Cell-traversal protein for ookinetes and sporozoites (CelTOS) antigen from Plasmodium falciparum was expressed in the chloroplast of C. reinhardtii and a highly sensitive and specific indirect ELISA test was developed using C. reinhardtii expressed PfCelTOS to detect malaria. Results obtained demonstrated that expressed recombinant PfCelTOS accumulates as a soluble, properly folded and functional protein within C. reinhardtii chloroplast and indirect ELISA using sera from malaria-positive donors suggested the potential use of expressed PfCelTOS as a malaria antigen for diagnosis tests.


Malaria Recombinant protein Chlamydomonas reinhardtii 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.


  1. 1.
    Almaraz-Delgado, A. L., Flores-Uribe, J., et al. (2014). Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express, 4(1), 57.CrossRefGoogle Scholar
  2. 2.
    Bandaranayake, A. D., & Almo, S. C. (2014). Recent advances in mammalian protein production. FEBS Letters, 588(2), 253–260.CrossRefGoogle Scholar
  3. 3.
    Barrera, D., Gimpel, J., et al. (2014). Rapid screening for the robust expression of recombinant proteins in algal plastids. Chloroplast Biotechnology 1132, 391–399.CrossRefGoogle Scholar
  4. 4.
    Bergmann-Leitner, E. S., Li, Q., et al. (2014). Protective immune mechanisms against pre-erythrocytic forms of Plasmodium berghei depend on the target antigen. Trials in Vaccinology, 3, 6–10.CrossRefGoogle Scholar
  5. 5.
    Bergmann-Leitner, E. S., Mease, R. M., et al. (2010). Immunization with pre-erythrocytic antigen CelTOS from Plasmodium falciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei. PLoS ONE, 5(8), e12294.CrossRefGoogle Scholar
  6. 6.
    Bonander, N., & Bill, R. M. (2012). Optimising yeast as a host for recombinant protein production (review). Recombinant Protein Production in Yeast, 866, 1–9.CrossRefGoogle Scholar
  7. 7.
    Contreras-Gómez, A., Sánchez-Mirón, A., et al. (2014). Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 30(1), 1–18.CrossRefGoogle Scholar
  8. 8.
    Doron, L., Segal, N. a., et al. (2016). Transgene expression in microalgae—from tools to applications. Frontiers in Plant Science 7, 505CrossRefGoogle Scholar
  9. 9.
    Dumont, J., Euwart, D., et al. (2016). Human cell lines for biopharmaceutical manufacturing: History, status, and future perspectives. Critical Reviews in Biotechnology, 36(6), 1110–1122.CrossRefGoogle Scholar
  10. 10.
    Economou, C., Wannathong, T., et al. (2014). A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtiiChloroplast Biotechnology: Methods and Protocols, 1132, 401–411.CrossRefGoogle Scholar
  11. 11.
    Espinosa, D. A., Vega-Rodriguez, J., et al. (2016). The P. falciparum cell-traversal protein for ookinetes and sporozoites as a candidate for pre-erythrocytic and transmission-blocking vaccines. Infection and Immunity 85(2), 00498–00416.Google Scholar
  12. 12.
    Gerasimova, S., Smirnova, O., et al. (2016). Production of recombinant proteins in plant cells. Russian Journal of Plant Physiology, 63(1), 26–37.CrossRefGoogle Scholar
  13. 13.
    Gimpel, J. A., Hyun, J. S., et al. (2015). Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnology and Bioengineering, 112(2), 339–345.CrossRefGoogle Scholar
  14. 14.
    Gregory, J. A., Li, F., et al. (2012). Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS ONE, 7(5), e37179.CrossRefGoogle Scholar
  15. 15.
    Ingstad, B., Munthali, A. C., et al. (2012). The evil circle of poverty: a qualitative study of malaria and disability. Malaria Journal, 11(1), 15.CrossRefGoogle Scholar
  16. 16.
    Jones, C. S., Luong, T., et al. (2013). Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Applied Microbiology and Biotechnology, 97(5), 1987–1995.CrossRefGoogle Scholar
  17. 17.
    Kariu, T., Ishino, T., et al. (2006). CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Molecular Microbiology, 59(5), 1369–1379.CrossRefGoogle Scholar
  18. 18.
    Kollewe, C., & Vilcinskas, A. (2013). Production of recombinant proteins in insect cells. American Journal of Biochemistry and Biotechnology, 9(3), 255–271.CrossRefGoogle Scholar
  19. 19.
    Lauersen, K. J., Berger, H., et al. (2013). Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. Journal of Biotechnology, 167(2), 101–110.CrossRefGoogle Scholar
  20. 20.
    Nadkarini, V., & Lindhardt, R. (1997). Enhancement of diaminobenzidine colorimetric signal in immunoblotting. BioTechniques, 23, 385–388.CrossRefGoogle Scholar
  21. 21.
    Rasala, B. A., & Mayfield, S. P. (2011). The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioengineered Bugs, 2(1), 50–54.CrossRefGoogle Scholar
  22. 22.
    Rasala, B. A., Muto, M., et al. (2010). Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal, 8(6), 719–733.CrossRefGoogle Scholar
  23. 23.
    Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology, 5, 172.Google Scholar
  24. 24.
    Sambrook, J., & Fritsch, E. (1997). Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  25. 25.
    Yao, J., Weng, Y., et al. (2015). Plants as factories for human pharmaceuticals: Applications and challenges. International Journal of Molecular Sciences, 16(12), 28549–28565.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyIranian Research Organization for Science and TechnologyTehranIran

Personalised recommendations