Advertisement

Molecular Biotechnology

, Volume 61, Issue 2, pp 145–152 | Cite as

Oxidative Damages to Eye Stem Cells, in Response to, Bright and Ultraviolet Light, Their Associated Mechanisms, and Salvage Pathways

  • Bipasha BoseEmail author
  • Najwa Abdur Rashid 
  • Sudheer Shenoy PEmail author
Review
  • 36 Downloads

Abstract

The surface of the eye is continuously exposed to the harshness of the external environment. As a homeostatic mechanism for replenishing the worn off cells of the ocular surface, a balance is maintained via the role of ocular stem cells. However, under extreme conditions of harshness like exposure to bright and ultraviolet light, the ocular stem cells are unable to do the repair mechanisms resulting in severe impairment of vision and disturbances in the eye. This work reappraises the recent understandings of mechanisms of oxidative damages caused to the ocular stem cells by UV/bright light and their probable mitigation.

Keywords

Ocular stem cells UVA UVB UVC Oxidative damage Cell signalling 

Notes

Acknowledgements

The authors would like to thank Mr. Utsav Sen Ph.D. student in Yenepoya research centre, Yenepoya University for his help in art work.

References

  1. 1.
    Daniels, J. T., Dart, J. K., Tuft, S. J., & Khaw, P. T. (2001). Corneal stem cells in review. Wound Repair and Regeneration, 9, 483–494.CrossRefGoogle Scholar
  2. 2.
    Xuan, M., Wang, S., Liu, X., He, Y., Li, Y., & Zhang, Y. (2016). Proteins of the corneal stroma: Importance in visual function. Cell and Tissue Research, 364, 9–16.CrossRefGoogle Scholar
  3. 3.
    Lavker, R. M., & Sun, T. T. (2003). Epithelial stem cells: The eye provides a vision. Eye, 17, 937–942.CrossRefGoogle Scholar
  4. 4.
    Du, Y., Funderburgh, M., Mann, M. N., SunderRaj, N., & Funderburgh, J. L. (2005). Multipotent stem cells in human corneal stroma. Stem Cells, 23, 1266–1275.CrossRefGoogle Scholar
  5. 5.
    Tropepe, V., Coles, B. L., Chiasson, B. J., Horsford, D. J., Elia, A. J., Mclnnes, R. R., et al. (2000). Retinal stem cells in the adult mammalian eye. Science, 287, 2032–2036.CrossRefGoogle Scholar
  6. 6.
    Dziasko, M. A., & Daniels, J. T. (2016). Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche. The Ocular Surface, 14, 322–330.CrossRefGoogle Scholar
  7. 7.
    Notara, M., Alatza, A., Gilfillan, J., Harris, A. R., Levis, H. J., Schrader, S., et al. (2010). In sickness and in health: Corneal epithelial stem cell biology, pathology and therapy. Experimental Eye Research, 90, 188–195.CrossRefGoogle Scholar
  8. 8.
    Dua, H. S., Shanmuganathan, V. A., Powell-Richards, A. O., Tighe, P. J., & Joseph, A. (2005). Limbal epithelial crypts: A novel anatomical structure and a putative limbal stem cell niche. British Journal of Ophthalmology, 89, 529–532.CrossRefGoogle Scholar
  9. 9.
    Shortt, A. J., Secker, G. A., Munro, P. M., Khaw, P. T., Tuft, S. J., & Daniels, J. T. (2007). Characterization of the limbal epithelial stem cell niche: Novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells, 25, 1402–1409.CrossRefGoogle Scholar
  10. 10.
    Du, Y., Carlson, E. C., Funderburgh, M. L., Birk, D. E., Pearlman, E., Guo, N., et al. (2009). Stem cell therapy restores transparency to defective murine corneas. Stem Cells, 27, 1635–1642.CrossRefGoogle Scholar
  11. 11.
    Dayem, A. A., Choi, H. Y., Kim, J. H., & Cho, S. G. (2010). Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers, 2, 859–884.CrossRefGoogle Scholar
  12. 12.
    Wakamatsu, T. H., Dogru, M., & Tsubota, K. (2008). Tearful relations: Oxidative stress, inflammation and eye diseases. Arquivos brasileiros de oftalmologia, 71, 72–79.CrossRefGoogle Scholar
  13. 13.
    Barker, F., & Brainard, G. (1991). The direct spectral transmittance of excised human lens as a function of age. US Food and Drug Administration Report.Google Scholar
  14. 14.
    Boettner, E. A., & Walter, J. R. (1962). Transmission of ocular media. Investigative Ophthalmology & Visual Science, 1, 777–783.Google Scholar
  15. 15.
    Semba, R. D., Margolick, J. B., Leng, S., Walston, J., Ricks, M. O., & Fried, L. P. (2005). T cell subsets and mortality in older community-dwelling women. Experimental Gerontology, 40, 81–87.CrossRefGoogle Scholar
  16. 16.
    Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., et al. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Medicine, 12, 446–451.CrossRefGoogle Scholar
  17. 17.
    Liedtke, S., Biebernick, S., Radke, T. F., Stapelkamp, D., Coenen, C., Zaehres, H., et al. (2015). DNA damage response in neonatal and adult stromal cells compared with induced pluripotent stem cells. Stem Cells Translational Medicine, 4, 576–589.CrossRefGoogle Scholar
  18. 18.
    Peng, C. H., Chang, Y. L., Kao, C. L., Tseng, L. M., Wu, C. C., Chen, Y. C., et al. (2010). SirT1—a sensor for monitoring self-renewal and aging process in retinal stem cells. Sensors, 10, 6172–6194.CrossRefGoogle Scholar
  19. 19.
    Gaillard, E. R., Atherton, S. J., Eldred, G., & Dillon, J. (1995). Photophysical studies on human retinal lipofuscin. Photochemistry and Photobiology, 61, 448–453.CrossRefGoogle Scholar
  20. 20.
    Rozanowska, M., Jarvis-Evans, J., Korytowski, W., Boulton, M. E., Burke, J. M., & Sarna, T. (1995). Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. Journal of Biological Chemistry, 270, 18825–18830.CrossRefGoogle Scholar
  21. 21.
    Akeo, K., Hiramitsu, T., Kanda, T., Yorifuji, H., & Okisaka, S. (1996). Comparative effects of linoleic acid and linoleic acid hydroperoxide on growth and morphology of bovine retinal pigment epithelial cells in vitro. Current Eye Research, 15, 467–476.CrossRefGoogle Scholar
  22. 22.
    Ueda, T., & Armstrong, D. (1996). Preventive effect of natural and synthetic antioxidants on lipid peroxidation in the mammalian eye. Ophthalmic Research, 28, 184–192.CrossRefGoogle Scholar
  23. 23.
    Spector, A., Kleiman, N. J., Huang, R. C., & Wang, R. (1989). Repair of H2O2 induced DNA damage in bovine lens epithelial cell cultures. Experimental Eye Research, 49, 689–698.CrossRefGoogle Scholar
  24. 24.
    Kleiman, N. J., Wang, R. R., & Spector, A. (1990). Ultraviolet light induced DNA damage and repair in bovine lens epithelial cells. Current Eye Research, 9, 1185–1193.CrossRefGoogle Scholar
  25. 25.
    Nagai, N., & Ito, Y. (2014). Excessive hydrogen peroxide enhances the attachment of amyloid β1-42 in the lens epithelium of UPL rats, a hereditary model for cataracts. Toxicology, 315, 55–64.CrossRefGoogle Scholar
  26. 26.
    Berthoud, V. M., & Beyer, E. C. (2009). Oxidative stress, lens gap junctions, and cataracts. Antioxidants & Redox Signaling, 11, 339–353.CrossRefGoogle Scholar
  27. 27.
    Rogers, C. S., Chan, L. M., Sims, Y. S., Byrd, K. D., Hinton, D. L., & Twining, S. S. (2004). The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Experimental Eye Research, 78, 1007–1014.CrossRefGoogle Scholar
  28. 28.
    Romero-Jiménez, M., Santodomingo-Rubido, J., & Wolffsohn, J. S. (2010). Keratoconus: A review. Contact Lens and Anterior Eye, 33, 157–166.CrossRefGoogle Scholar
  29. 29.
    Kenney, M. C., Chwa, M., Atilano, S. R., Tran, A., Carballo, M., Saghizadeh, M., et al. (2005). Increased levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus corneas: Evidence that oxidative stress plays a role in this disorder. Investigative Ophthalmology & Visual Science, 46, 823–832.CrossRefGoogle Scholar
  30. 30.
    Arnal, E., Peris-Martínez, C., Menezo, J. L., Johnsen-Soriano, S., & Romero, F. J. (2011). Oxidative stress in keratoconus? Investigative Ophthalmology & Visual Science, 52, 8592–8597.CrossRefGoogle Scholar
  31. 31.
    Eghrari, A. O., & Gottsch, J. D. (2010). Fuchs’ corneal dystrophy. Expert Review of Ophthalmology, 5, 147–159.CrossRefGoogle Scholar
  32. 32.
    Jurkunas, U. V., Bitar, M. S., Funaki, T., & Azizi, B. (2010). Evidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy. American Journal of Pathology, 177, 2278–2289.CrossRefGoogle Scholar
  33. 33.
    Buddi, R., Lin, B., Atilano, S. R., Zorapapel, N. C., Kenney, M. C., & Brown, D. J. (2002). Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry & Cytochemistry, 50, 341–351.CrossRefGoogle Scholar
  34. 34.
    Wilson, S. E., & Bourne, W. M. (1988). Fuchs’ dystrophy. Cornea, 7, 2–18.CrossRefGoogle Scholar
  35. 35.
    Gottsch, J. D., Bowers, A. L., Margulies, E. H., Seitzman, G. D., Kim, S. W., Saha, S., et al. (2003). Serial analysis of gene expression in the corneal endothelium of Fuchs’ dystrophy. Investigative Ophthalmology & Visual Science, 44, 594–599.CrossRefGoogle Scholar
  36. 36.
    Jurkunas, U. V., Rawe, I., Bitar, M. S., Zhu, C., Harris, D. L., Colby, K., et al. (2008). Decreased expression of peroxiredoxins in Fuchs’ endothelial dystrophy. Investigative Ophthalmology & Visual Science, 49, 2956–2963.CrossRefGoogle Scholar
  37. 37.
    Andres-Mateos, E., Perier, C., Zhang, L., Blanchard-Fillion, B., Greco, T. M., Thomas, B., et al. (2007). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proceedings of the National Academy of Sciences, 104, 14807–14812.CrossRefGoogle Scholar
  38. 38.
    Liu, C., Chen, Y., Kochevar, I. E., & Jurkunas, U. V. (2014). Decreased DJ-1 leads to impaired Nrf2-regulated antioxidant defence and increased UV-A-induced apoptosis in corneal endothelial cells DJ-1 deficiency increases oxidative damage in CECs. Investigative Ophthalmology & Visual Science, 55, 5551–5560.CrossRefGoogle Scholar
  39. 39.
    Czarny, P., Kasprzak, E., Wielgorski, M., Udziela, M., Markiewicz, B., Blasiak, J., et al. (2013). DNA damage and repair in Fuchs endothelial corneal dystrophy. Molecular Biology Reports, 40, 2977–2983.CrossRefGoogle Scholar
  40. 40.
    Higa, K., Shimmura, S., Miyashita, H., Shimazaki, J., & Tsubota, K. (2005). Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells. Experimental Eye Research, 81, 218–223.CrossRefGoogle Scholar
  41. 41.
    Prota, G. (1997). Pigment cell research: What directions? Pigment Cell Research, 10, 5–11.CrossRefGoogle Scholar
  42. 42.
    Shimmura, S., & Tsubota, K. (1997). Ultraviolet B-induced mitochondrial dysfunction is associated with decreased cell detachment of corneal epithelial cells in vitro. Investigative Ophthalmology & Visual Science, 38, 620–626.Google Scholar
  43. 43.
    Liang, F. Q., & Godley, B. F. (2003). Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: A possible mechanism for RPE aging and age-related macular degeneration. Experimental Eye Research, 76, 397–403.CrossRefGoogle Scholar
  44. 44.
    Jin, G. F., Hurst, J. S., & Godley, B. F. (2001). Hydrogen peroxide stimulates apoptosis in cultured human retinal pigment epithelial cells. Current Eye Research, 22, 165–173.CrossRefGoogle Scholar
  45. 45.
    Godley, B., Shamsi, F., Jin, G. F., Hurst, J. S., Zheng, B., & Boulton, M. (2001). Effect of lipofuscin and light exposure in cultured human retinal pigment epithelial cells. Investigative Ophthalmology & Visual Science, 42, S943.Google Scholar
  46. 46.
    Levin, L. A., Clark, J. A., & Johns, L. K. (1996). Effect of lipid peroxidation inhibition on retinal ganglion cell death. Investigative Ophthalmology & Visual Science, 37, 2744–2749.Google Scholar
  47. 47.
    McKinnon, S. J., Lehman, D. M., Kerrigan-Baumrind, L. A., Merges, C. A., Pease, M. E., Kerrigan, D. F., et al. (2002). Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Investigative Ophthalmology & Visual Science, 43, 1077–1087.Google Scholar
  48. 48.
    Miyashita, T., & Reed, J. C. (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80, 293–299.CrossRefGoogle Scholar
  49. 49.
    Hockenbery, D. M. (1992). The bcl-2 oncogene and apoptosis. Seminars in Immunology, 4, 413–420.Google Scholar
  50. 50.
    Miyashita, T., Harigai, M., Hanada, M., & Reed, J. C. (1994). Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Research, 54, 3131–3135.Google Scholar
  51. 51.
    Riley, M. V. (1998). Response to the corneal endothelium to oxidative stress. In H. D. Cavamagh (Ed.), The cornea: Transactions of the World Congress on the Cornea III (pp. 211–216). New York: Raven Press.Google Scholar
  52. 52.
    Rosette, C., & Karin, M. (1996). Ultraviolet light and osmotic stress: Activation of the JNK cascade through multiple growth factor and cytokine receptors. Science, 274, 1194–1197.CrossRefGoogle Scholar
  53. 53.
    Galcheva-Gargova, Z., Derijard, B., Wu, I. H., & Davis, R. J. (1994). An osmo sensing signal transduction pathway in mammalian cells. Science, 265, 806–808.CrossRefGoogle Scholar
  54. 54.
    Kallunki, T., Su, B., Tsigelny, I., Sluss, H. K., Dérijard, B., Moore, G., et al. (1994) JNK2 contains a specificity determining region responsible for efficient c-Jun binding and phosphorylation. Genes & Development, 8, 2996–3007.CrossRefGoogle Scholar
  55. 55.
    Minden, A., Lin, A., Claret, F. X., Abo, A., & Karin, M. (1995). Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell, 81, 1147–1157.CrossRefGoogle Scholar
  56. 56.
    Wang, L., Xu, D., Dai, W., & Lu, L. (1999). An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. Journal of Biological Chemistry, 274, 3678–3685.CrossRefGoogle Scholar
  57. 57.
    Engelberg, D., Klein, C., Martinetto, H., Struhl, K., & Karin, M. (1994). The UV response involving the Ras signaling pathway and AP-1 transcription factors is conserved between yeast and mammals. Cell, 77, 381–390.CrossRefGoogle Scholar
  58. 58.
    Kitagawa, D., Tanemura, S., Ohata, S., Shimizu, N., Seo, J., Nishitai, G., et al. (2002). Activation of extracellular signal-regulated kinase by ultraviolet is mediated through src-dependent epidermal growth factor receptor phosphorylation its implication in an anti-apoptotic function. Journal of Biological Chemistry, 277, 366–371.CrossRefGoogle Scholar
  59. 59.
    Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., et al. (1994). JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell, 76, 1025–1037.CrossRefGoogle Scholar
  60. 60.
    Devary, Y., Gottlieb, R. A., Smeal, T., & Karin, M. (1992). The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell, 71, 1081–1091.CrossRefGoogle Scholar
  61. 61.
    Hibi, M., Lin, A., Smeal, T., Minden, A., & Karin, M. (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes & Development, 7, 2135–2148.CrossRefGoogle Scholar
  62. 62.
    Buscher, M., Rahmsdorf, H. J., Litfin, M., Karin, M., & Herrlich, P. (1998). Activation of the c-fos gene by UV and phorbol ester: Different signal transduction pathways converge to the same enhancer element. Oncogene, 3, 301–311.Google Scholar
  63. 63.
    Devary, Y., Gottlieb, R. A., Lau, L. F., & Karin, M. (1991). Rapid and preferential activation of the c-jun gene during the mammalian UV response. Molecular and Cellular Biology, 11, 2804–2811.CrossRefGoogle Scholar
  64. 64.
    Herrlich, P., Ponta, H., & Rahmsdorf, H. J. (1992). DNA damage-induced gene expression: Signal transduction and relation to growth factor signalling (review). Reviews of Physiology, Biochemistry and Pharmacology, 119, 187–223.Google Scholar
  65. 65.
    Boileau, T. W. M., Bray, T. M., & Bomser, J. A. (2003). Ultraviolet radiation modulates nuclear factor kappa B activation in human lens epithelial cells. Journal of Biochemical and Molecular Toxicology, 17, 108–113.CrossRefGoogle Scholar
  66. 66.
    Zhuge, C. C., Xu, J. Y., Zhang, J., Li, W., Li, P., & Li, Z. (2014). Fullerenol protects retinal pigment epithelial cells from oxidative stress–induced premature senescence via activating SIRT1. Investigative Ophthalmology & Visual Science, 55, 4628–4638.CrossRefGoogle Scholar
  67. 67.
    Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin–induced apoptosis in H9c2 cells and cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology, 295, H1956–H1965.Google Scholar
  68. 68.
    She, Q. B., Chen, N., & Dong, Z. (2000). ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. Journal of Biological Chemistry, 275, 20444–20449.CrossRefGoogle Scholar
  69. 69.
    Azizi, B., Ziaei, A., Fuchsluger, T., Schmedt, T., Chen, Y., & Jurkunas, U. V. (2011). p53-regulated increase in oxidative-stress–induced apoptosis in Fuchs endothelial corneal dystrophy: A native tissue model. Investigative Ophthalmology & Visual Science, 52, 9291–9297.CrossRefGoogle Scholar
  70. 70.
    Ghosh, S., May, M. J., & Kopp, E. B. (1998). NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annual Review of Immunology, 16, 225–260.CrossRefGoogle Scholar
  71. 71.
    Kang, S. M., Tran, A. C., Grilli, M., & Lenardo, M. J. (1992). NF-kappa B subunit regulation in nontransformed CD4 + T lymphocytes. Science, 256, 1452–1456.CrossRefGoogle Scholar
  72. 72.
    Dent, P., Yacoub, A., Fisher, P. B., Hagan, M. P., & Grant, S. (2003). MAPK pathways in radiation responses. Oncogene, 22, 5885–5896.CrossRefGoogle Scholar
  73. 73.
    Zwang, Y., & Yarden, Y. (2006). p38 MAP kinase mediates stress-induced internalization of EGFR: Implications for cancer chemotherapy. EMBO Journal, 25, 4195–4206.CrossRefGoogle Scholar
  74. 74.
    Li, T., Dai, W., & Lu, L. (2002). Ultraviolet-induced junD activation and apoptosis in myeloblastic leukemia ML-1 cells. Journal of Biological Chemistry, 277, 32668–32676.CrossRefGoogle Scholar
  75. 75.
    Bode, A. M., & Dong, Z. (2003). Mitogen-activated protein kinase activation in UV-induced signal transduction. Science Signaling, 28, RE2.CrossRefGoogle Scholar
  76. 76.
    Roduit, R., & Schorderet, D. F. (2008). MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells. Apoptosis, 13, 343–353.CrossRefGoogle Scholar
  77. 77.
    Ho, T. C., Yang, Y. C., Cheng, H. C., Wu, A. C., Chen, S. L., Chen, H. K., et al. (2006). Activation of mitogen-activated protein kinases is essential for hydrogen peroxide -induced apoptosis in retinal pigment epithelial cells. Apoptosis, 11, 1899–1908.CrossRefGoogle Scholar
  78. 78.
    Cao, G., Chen, M., Song, Q., Liu, Y., Xie, L., Han, Y., et al. (2012). EGCG protects against UVB-induced apoptosis via oxidative stress and the JNK1/c-Jun pathway in ARPE19 cells. Molecular Medicine Reports, 5, 54–59.Google Scholar
  79. 79.
    Lowry, N. A., & Temple, S. (2007). Making human neurons from stem cells after spinal cord injury. PLoS Medicine, 4, 236–238.CrossRefGoogle Scholar
  80. 80.
    Ramachandran, A. C., Bartlett, L. E., & Mendez, I. M. (2002). A multiple target neural transplantation strategy for Parkinson’s disease. Reviews in the Neurosciences, 13, 243–256.CrossRefGoogle Scholar
  81. 81.
    Slavin, S., Kurkalli, B. G., & Karussis, D. (2008). The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders. Clinical Neurology and Neurosurgery, 110, 943–946.CrossRefGoogle Scholar
  82. 82.
    Nasser, W., Amitai-Lange, A., Soteriou, D., Hanna, R., Tiosano, B., Fuchs, Y., et al. (2018). Corneal-committed cells restore the stem cell pool and tissue boundary following injury. Cell Reports, 22, 323–331.CrossRefGoogle Scholar
  83. 83.
    Enzmann, V., Yolcu, E., Kaplan, H. J., & Ildstad, S. T. (2009). Stem cells as tools in regenerative therapy for retinal degeneration. Archives of Ophthalmology, 127, 563–571.CrossRefGoogle Scholar
  84. 84.
    Chang, H. M., Hung, K. H., Hsu, C. C., Lin, T. C., & Chen, S. Y.(2015). Using induced pluripotent stem cell-derived conditional medium to attenuate the light induced photo damaged retina of rats. Journal of the Chinese Medical Association, 78, 169–176.CrossRefGoogle Scholar
  85. 85.
    Zhou, L., Wang, W., Liu, Y., Fernandez de Castro, J., Ezashi, T., et al. (2011). Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells, 29, 972–980.CrossRefGoogle Scholar
  86. 86.
    Assawachananont, J., Mandai, M., Okamoto, S., Yamada, C., Eiraku, M., Yonemura, S., et al. (2014). Transplantation of embryonic and induced pluripotent stem cellderived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports, 2, 662–674.CrossRefGoogle Scholar
  87. 87.
    Tucker, B. A., Park, I. H., Qi, S. D., Klassen, H. J., Jiang, C., Yao, J., et al. (2011). Transplantation of adult mouse iPS cellderived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE, 6, e18992.CrossRefGoogle Scholar
  88. 88.
    Kamao, H., Mandai, M., Okamoto, S., Sakai, N., Suga, A., Sugita, S., et al. (2014). Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2, 205–218.CrossRefGoogle Scholar
  89. 89.
    Garita-Hernandez, M., Diaz-Corrales, F., Lukovic, D., Guede, I. G., Lloret, A. D., Sanchez, M. L., et al. (2013). Hypoxia increases the yield of photoreceptors differentiating from mouse embryonic stem cells and improves the modelling of retinogenesis in vitro. Stem Cells, 31, 966–978.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Stem Cells and Regenerative Medicine Centre, Yenepoya Research CentreYenepoya (Deemed to be University)MangaloreIndia
  2. 2.College of MedicinePrincess Nourah bint Abdulrahman UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations