Molecular Biotechnology

, Volume 60, Issue 12, pp 975–983 | Cite as

Avian Bioreactor Systems: A Review

  • Rachel M. Woodfint
  • Erin Hamlin
  • Kichoon LeeEmail author


Animal bioreactors are genetically modified animal systems that have the potential to reduce production cost, and improve production efficiency, of pharmaceutically relevant recombinant proteins. Several species including goats, cattle, rabbits, and avians have been genetically modified to secrete target proteins into milk, egg whites, blood, or other bodily fluids. There are several advantages associated with the use of avians as bioreactor systems. Avians have a short generation time, leading to the quick establishment of a transgenic line and high egg production. Transgenic avian systems allow for appropriate post-translational modification, as opposed to prokaryotic cell culture bioreactors, and have higher productivity than mammalian cell culture systems. Furthermore, recombinant proteins can be incorporated into egg whites and easily collected from the sterile environment of the egg. Magnum-specific expression of target genes has been achieved by use of the ovalbumin promoter, leading to a localization of the target protein into the avian egg. In this review, we discuss the current advancements, future potential, and limitations of avian bioreactor systems.


Bioreactor Avian Chicken Transgenic Ovalbumin Retroviral vector 



The authors would like to acknowledge Erin Connell, Eugene Lee, and Michelle Milligan for their assistance in helping prepare this manuscript for submission.

Author Contributions

The paper was written by RW and KL with help from EH. Figure and table were made by RW. KL oversaw the development of the paper. All authors have read and approve the final manuscript.


This work was partially supported by: (1) the United States Department of Agriculture National Institute of Food and Agriculture Grant (Project No. 2016-08413), and (2) the Ohio Agricultural Research and Development Center Research SEEDS funding (Project No. 2017-069).

Compliance with Ethical Standards

Conflict of interest

The authors of this paper declare no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Pham, V., & Phuc (2017). Medical biotechnology: Techniques and applications. In D. Barh, V. Azevedo (Eds.), Omics technologies and bio-engineering: Towards improving quality of life (Vol. 1, pp. 449–469). Amsterdam: Academic Press.Google Scholar
  2. 2.
    Sanchez-Garcia, L., Martín, L., Mangues, R., Ferrer-Miralles, N., Vázquez, E., & Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: A 2015 update. Microbial Cell Factories, 15, 1.CrossRefGoogle Scholar
  3. 3.
    Overton, T. W. (2014). Recombinant protein production in bacterial hosts. Drug Discovery Today, 5, 590–601.CrossRefGoogle Scholar
  4. 4.
    Swartz, J. R. (2001). Advances in Escherichia coli production of therapeutic proteins. Current Opinion in Biotechnology, 2, 195–201.CrossRefGoogle Scholar
  5. 5.
    Gomord, V., & Faye, L. (2004). Posttranslational modification of therapeutic proteins in plants. Current Opinion in Plant Biology, 2, 171–181.CrossRefGoogle Scholar
  6. 6.
    Houdebine, L. M. (2009). Production of pharmaceutical proteins by transgenic animals. Comparative Immunology, Microbiology and Infectious Diseases, 2, 107–121.CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Zhao, S., Bai, L., Fan, J., & Liu, E. (2013) Expression systems and species used for transgenic animal bioreactors. BioMed Research International 2013, 580463.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cain, J. A., Solis, N., & Cordwell, S. J. (2014). Beyond gene expression: The impact of protein post-translational modifications in bacteria. Journal of Proteomics, 97, 265–286.CrossRefGoogle Scholar
  9. 9.
    Maksimenko, O. G., Deykin, A. V., Khodarovich, Y. M., & Georgiev, P. G. (2013). Use of transgenic animals in biotechnology: Prospects and problems. Acta Naturae., 1, 33–46.Google Scholar
  10. 10.
    Kwon, M. S., Koo, B. C., Kim, D., Nam, Y. H., Cui, X.-S., Kim, N.-H., et al. (2018). Generation of transgenic chickens expressing the human erythropoietin (hEPO) gene in an oviduct-specific manner: Production of transgenic chicken eggs containing human erythropoietin in egg whites. PLoS ONE, 13, 5.Google Scholar
  11. 11.
    Kling, J. (2009). First US approval for a transgenic animal drug. Nature Biotechnology, 4, 302–304.CrossRefGoogle Scholar
  12. 12.
    Editorial Staff. (2014). Rabbit milk Ruconest for hereditary angioedema. Nature Biotechnology, 32, 849.Google Scholar
  13. 13.
    Sheridan, C. (2016). FDA approves ‘farmaceutical’ drug from transgenic chickens. Nature Biotechnology, 2, 117–119.CrossRefGoogle Scholar
  14. 14.
    Jaenisch, R., & Mintz, B. (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proceedings of the National Academy of Sciences, 4, 1250–1254.CrossRefGoogle Scholar
  15. 15.
    Salter, D. W., Smith, E. J., Hughes, S. H., Wright, S. E., & Crittenden, L. B. (1987). Transgenic chickens: Insertion of retroviral genes into the chicken germ line. Virology, 157, 236–240.CrossRefGoogle Scholar
  16. 16.
    Sang, H. (2004). Prospects for transgenesis in the chick. Mechanisms of Development, 9, 1179–1186.CrossRefGoogle Scholar
  17. 17.
    Selden, R. C., Springman, K., Hondele, J., Meyer, J., Winnacker, E.-L., Kräußlich, H., et al. (1985). Production of transgenic mice, rabbits and pigs by microinjection into pronuclei. Reproduction in Domestic Animals, 20, 4, 251–252.CrossRefGoogle Scholar
  18. 18.
    Ittner, L. M., & Götz, J. (2006). Pronuclear injection for the production of transgenic mice. Nature Protocols, 2(5), 1206–1215.CrossRefGoogle Scholar
  19. 19.
    Liu, C., Xie, W., Gui, C., & Du, Y. (2013). Pronuclear microinjection and oviduct transfer procedures for transgenic mouse production. Methods in Molecular Biology, 1027, 217–232. Scholar
  20. 20.
    Li, Z., Zeng, F., Meng, F., Xu, Z., Zhang, X., Huang, X., et al. (2014). Generation of transgenic pigs by cytoplasmic injection of piggyBac transposase-based pmGENIE-3 plasmids. Biology of Reproduction, 90, 5.Google Scholar
  21. 21.
    Ahn, J., Shin, S., Suh, Y., Park, J. Y., Hwang, S., & Lee, K. (2015). Identification of the avian RBP7 gene as a new adipose-specific gene and RBP7 promoter-driven GFP expression in adipose tissue of transgenic quail. PLoS ONE, 10, 4.Google Scholar
  22. 22.
    Woodfint, R. M., Chen, P. R., Ahn, J., Suh, Y., Hwang, S., Lee, S. S., et al. (2017). Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells. International Journal of Molecular Sciences, 18, 1.CrossRefGoogle Scholar
  23. 23.
    Shuman, R. M. (1991). Production of transgenic birds. Experientia, 9, 897–905.CrossRefGoogle Scholar
  24. 24.
    Sato, Y., & Lansford, R. (2013). Transgenesis and imaging in birds and available transgenic reporter lines. Development, Growth & Differentiation, 4, 406–421.CrossRefGoogle Scholar
  25. 25.
    Nishijima, K., & Iijima, S. (2013). Transgenic chickens. Development, Growth & Differentiation, 1, 207–216.CrossRefGoogle Scholar
  26. 26.
    Scott, B. B., & Lois, C. (2005) Generation of tissue-specific transgenic birds with lentiviral vectors. Proceedings of the National Academy of Sciences, 45, 16443–16447.CrossRefGoogle Scholar
  27. 27.
    Park, T. S., & Han, J. Y. (2012). piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9337–9341.CrossRefGoogle Scholar
  28. 28.
    Chojnacka-Puchta, L., Kasperczyk, K., Płucienniczak, G., Sawicka, D., & Bednarczyk, M. (2012). Primordial germ cells (PGCs) as a tool for creating transgenic chickens. Polish Journal of Veterinary Sciences, 15(1), 181–188.CrossRefGoogle Scholar
  29. 29.
    Tyack, S. G., Jenkins, K. A., O’Neil, T. E., Wise, T. G., Morris, K. R., Bruce, M. P., et al. (2013). A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Research, 22(6), 1257–1264.CrossRefGoogle Scholar
  30. 30.
    Park, T. S., Lee, H. G., Moon, J. K., Lee, H. J., Yoon, J. W., Yun, B. N., et al. (2015). Deposition of bioactive human epidermal growth factor in the egg white of transgenic hens using an oviduct-specific minisynthetic promoter. The FASEB Journal, 6, 2386–2396.CrossRefGoogle Scholar
  31. 31.
    Miyahara, D., Oishi, I., Makino, R., Kurumisawa, N., Nakaya, R., Ono, T., et al. (2016). Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2. Journal of Reproduction and Development, 62(2), 143–149.CrossRefGoogle Scholar
  32. 32.
    Vick, L., Li, Y., & Simkiss, K. (1993). Transgenic birds from transformed primordial germ cells. Proceedings of the Royal Society of London, 251(1332), 179.CrossRefGoogle Scholar
  33. 33.
    Schusser, B., Collarini, E. J., Yi, H., Izquierdo, S. M., Fesler, J., Pedersen, D., et al. (2013). Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proceedings of the National Academy of Sciences, 110(50), 20170–20175.CrossRefGoogle Scholar
  34. 34.
    Macdonald, J., Taylor, L., Sherman, A., Kawakami, K., Takahashi, Y., Sang, H. M., et al. (2012). Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proceedings of the National Academy of Sciences, 109(23), 1466–1472.CrossRefGoogle Scholar
  35. 35.
    Kumar, T. R., Larson, M., Wang, H., McDermott, J., & Bronshteyn, I. (2009). Transgenic mouse technology: Principles and methods. Methods in Molecular Biology, 590, 335–362.CrossRefGoogle Scholar
  36. 36.
    Pinkert, C. A. (2014). Transgenic animal technology: A laboratory handbook (3rd ed.). Amsterdam: Elsevier.Google Scholar
  37. 37.
    Harvey, A. J., Speksnijder, G., Baugh, L. R., Morris, J. A., & Ivarie, R. (2002). Expression of exogenous protein in the egg white of transgenic chickens. Nature Biotechnology, 4, 396–399.CrossRefGoogle Scholar
  38. 38.
    Rapp, J. C., Harvey, A. J., Speksnijder, G. L., Hu, W., & Ivarie, R. (2003). Biologically active human interferon α-2b produced in the egg white of transgenic hens. Transgenic Research, 5, 569–575.CrossRefGoogle Scholar
  39. 39.
    Li, H., Liu, Q., Cui, K., Liu, J., Ren, Y., & Shi, D. (2013). Expression of biologically active human interferon alpha 2b in the milk of transgenic mice. Transgenic Research, 22(1), 169–178.CrossRefGoogle Scholar
  40. 40.
    Kamihira, M., Ono, K., Esaka, K., Nishijima, K., Kigaku, R., Komatsu, H., et al. (2005). High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. Journal of Virology, 17, 10864–10874.CrossRefGoogle Scholar
  41. 41.
    Kawabe, Y., Kamihira, M., Ono, K., Kyogoku, K., Nishijima, K., & Iijima, S. (2006). Production of scFv-Fc fusion protein using genetically manipulated quails. Journal of Bioscience and Bioengineering, 4, 297–303.CrossRefGoogle Scholar
  42. 42.
    Lee, S. H., Gupta, M. K., Han, D. W., Han, S. Y., Uhm, S. J., Kim, T., et al. (2007). Development of transgenic chickens expressing human parathormone under the control of a ubiquitous promoter by using a retrovirus vector system. Poultry Science, 10, 2221–2227.CrossRefGoogle Scholar
  43. 43.
    Kodama, D., Nishimiya, D., Iwata, K., Yamaguchi, K., Yoshida, K., Kawabe, Y., et al. (2008). Production of human erythropoietin by chimeric chickens. Biochemical and Biophysical Research Communications, 4, 834–839.CrossRefGoogle Scholar
  44. 44.
    Kwon, M. S., Koo, B. C., Choi, B. R., Park, Y. Y., Lee, Y. M., Suh, H. S., et al. (2008). Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Molecular Reproduction and Development, 7, 1120–1126.CrossRefGoogle Scholar
  45. 45.
    Kyogoku, K., Yoshida, K., Watanabe, H., Yamashita, T., Kawabe, Y., Motono, M., et al. (2008). Production of recombinant tumor necrosis factor receptor/Fc fusion protein by genetically manipulated chickens. Journal of Bioscience and Bioengineering, 5, 454–459.CrossRefGoogle Scholar
  46. 46.
    Kamihira, M., Kawabe, Y., Shindo, T., Ono, K., Esaka, K., Yamashita, T., et al. (2009). Production of chimeric monoclonal antibodies by genetically manipulated chickens. Journal of Biotechnology, 141, 1–2.CrossRefGoogle Scholar
  47. 47.
    Koo, B. C., Kwon, M. S., Lee, H., Kim, M., Kim, D., Roh, J. Y., et al. (2010). Tetracycline-dependent expression of the human erythropoietin gene in transgenic chickens. Transgenic Research, 3, 437–447.CrossRefGoogle Scholar
  48. 48.
    Penno, C. A., Kawabe, Y., Ito, A., & Kamihira, M. (2010). Production of recombinant human erythropoietin/Fc fusion protein by genetically manipulated chickens. Transgenic Research, 2, 187–195.CrossRefGoogle Scholar
  49. 49.
    Kwon, M. S., Koo, B. C., Roh, J. Y., Kim, M., Kim, J. H., & Kim, T. (2011). Production of transgenic chickens expressing a tetracycline-inducible GFP gene. Biochemical and Biophysical Research Communications, 4, 890–894.CrossRefGoogle Scholar
  50. 50.
    Lee, S. H., Gupta, M. K., Ho, Y. T., Kim, T., & Lee, H. T. (2013). Transgenic chickens expressing human urokinase-type plasminogen activator. Poultry Science, 9, 2396–2403.CrossRefGoogle Scholar
  51. 51.
    Koo, B. C., Kwon, M. S., Kim, D., Kim, S. A., Kim, N. H., & Kim, T. (2017). Production of transgenic chickens constitutively expressing human erythropoietin (hEPO): Problems with uncontrollable overexpression of hEPO gene. Biotechnology and Bioprocess Engineering, 1, 22–29.CrossRefGoogle Scholar
  52. 52.
    Petitte, J. N., & Mozdziak, P. E. (2007). The incredible, edible, and therapeutic egg. Proceedings of the National Academy of Sciences, 6, 1739–1740.CrossRefGoogle Scholar
  53. 53.
    Stevens, L. (1991). Egg white proteins. Comparative Biochemistry and Physiology Part B, 100, 1–9.CrossRefGoogle Scholar
  54. 54.
    Mann, K. (2007). The chicken egg white proteome. Proteomics, 7, 3558–3568.CrossRefGoogle Scholar
  55. 55.
    Wyburn, G. M., Johnston, H. S., Draper, M. H., & Davidson, M. F. (1970). The fine structure of the infundibulum and magnum of the oviduct of Gallus domesticus. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences, 3, 213–232.CrossRefGoogle Scholar
  56. 56.
    Jung, J. G., Lim, W., Park, T. S., Kim, J. N., Han, B. K., Song, G., et al. (2011). Structural and histological characterization of oviductal magnum and lectin-binding patterns in Gallus domesticus. Reproductive Biology and Endocrinology, 9, 62.CrossRefGoogle Scholar
  57. 57.
    Whenham, N., Wilson, P. W., Bain, M. M., Stevenson, L., & Dunn, I. C. (2014). Comparative biology and expression of TENP, an egg protein related to the bacterial permeability-increasing family of proteins. Gene, 1, 99–108.CrossRefGoogle Scholar
  58. 58.
    Zhu, L., Van de Lavoir, M. C., Albanese, J., Beenhouwer, D. O., Cardarelli, P. M., Cuison, S., et al. (2005). Production of human monoclonal antibody in eggs of chimeric chickens. Nature Biotechnology, 9, 1159–1169.CrossRefGoogle Scholar
  59. 59.
    Lillico, S. G., Sherman, A., McGrew, M. J., Robertson, C. D., Smith, J., Haslam, C., et al. (2007). Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proceedings of the National Academy of Sciences, 6, 1771–1776.CrossRefGoogle Scholar
  60. 60.
    Byun, S. J., Kim, S. W., Kim, K. W., Kim, J. S., Hwang, I. S., Chung, H. K., et al. (2011). Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens. Bioscience, Biotechnology, and Biochemistry, 4, 646–649.CrossRefGoogle Scholar
  61. 61.
    Kwon, S. C., Choi, J. W., Jang, H. J., Shin, S. S., Lee, S. K., Park, T. S., et al. (2010). Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biology of Reproduction, 6, 1057–1064.CrossRefGoogle Scholar
  62. 62.
    Cao, D., Wu, H., Li, Q., Sun, Y., Liu, T., Fei, J., et al. (2015). Expression of recombinant human lysozyme in egg whites of transgenic hens. PLoS ONE, 10, 2.Google Scholar
  63. 63.
    Liu, T., Wu, H., Cao, D., Li, Q., Zhang, Y., Li, N., et al. (2015). Oviduct-specific expression of human neutrophil defensin 4 in lentivirally generated transgenic chickens. PLoS ONE, 10, 5.Google Scholar
  64. 64.
    Schweers, L. A., Frank, D. E., Weigel, N. L., & Sanders, M. M. (1990). The steroid-dependent regulatory element in the ovalbumin gene does not function as a typical steroid response element. Journal of Biological Chemistry, 13, 7590–7595.Google Scholar
  65. 65.
    Kodama, D., Nishimiya, D., Nishijima, K., Okino, Y., Inayoshi, Y., Kojima, Y., et al. (2012). Chicken oviduct-specific expression of transgene by a hybrid ovalbumin enhancer and the Tet expression system. Journal of Bioscience and Bioengineering, 2, 146–153.CrossRefGoogle Scholar
  66. 66.
    Rodriguez, A., Castro, F. O., Aguilar, A., Ramos, B., Del, B. D. G., Lleonart, R., et al. (1995). Expression of active human erythropoietin in the mammary gland of lactating transgenic mice and rabbits. Biological Research, 2, 141–153.Google Scholar
  67. 67.
    Aguirre, A., Castro-Palomino, N., De, F. J., & Castro, F. O. (1998). Expression of human erythropoietin transgenes and of the endogenous wap gene in the mammary gland of transgenic rabbits during gestation and lactation. Transgenic Research, 4, 311–317.CrossRefGoogle Scholar
  68. 68.
    Park, J. K., Lee, Y. K., Lee, P., Chung, H. J., Kim, S., Lee, H. G., et al. (2006). Recombinant human erythropoietin produced in milk of transgenic pigs. Journal of Biotechnology, 3, 362–371.CrossRefGoogle Scholar
  69. 69.
    Li, X., Yang, Y., Bu, L., Guo, X., Tang, C., Song, J., et al. (2014). Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Research, 24, 501–504.CrossRefGoogle Scholar
  70. 70.
    Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., et al. (2015). Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports, 5, 14253.CrossRefGoogle Scholar
  71. 71.
    Yukiko, K., Yu, H., Atsuo, K., & Shin-ichi, H. (2014). Efficient generation of knock-in transgenic zebrafish carrying reporter/ driver genes by CRISPR/Cas9-mediated genome engineering. Scientific Reports, 4, 6545.Google Scholar
  72. 72.
    Jin, L. F., & Li, J. S. (2016). Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems. Zoological Research, 37(4), 205–213.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Ahn, J., Lee, J., Park, J. Y., Oh, K. B., Hwang, S., Lee, C. W., et al. (2017). Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system. Poultry Science, 96(5), 1445–1450.PubMedGoogle Scholar
  74. 74.
    Woodcock, M. E., Idoko-Akoh, A., & McGrew, M. J. (2017). Gene editing in birds takes flight. Mammalian Genome, 28, 315–323.CrossRefGoogle Scholar
  75. 75.
    Oishi, I., Yoshii, K., Miyahara, D., & Tagami, T. (2018). Efficient production of human interferon beta in the white of eggs from ovalbumin gene–targeted hens. Scientific Reports, 8, 1.CrossRefGoogle Scholar
  76. 76.
    Bai, J., Li, J., & Mao, Q. (2013). Construction of a single lentiviral vector containing tetracycline-inducible Alb-uPA for transduction of uPA expression in murine hepatocytes. PLoS ONE, 8, 4.Google Scholar
  77. 77.
    National Research Council (US) Committee. (2002). Animal biotechnology: Science-based concerns. Washington, DC: National Academies Press.Google Scholar
  78. 78.
    Doran, T. J., Cooper, C. A., Jenkins, K. A., & Tizard, M. L. (2106). Advances in genetic engineering of the avian genome: “Realizing the promise”. Transgenic Research, 3, 307–319.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Animal SciencesThe Ohio State UniversityColumbusUSA

Personalised recommendations