Molecular Biotechnology

, Volume 60, Issue 11, pp 799–809 | Cite as

Mutator-Based Transposon Display: A Genetic Tool for Evolutionary and Crop-Improvement Studies in Maize

  • Rahul Vasudeo Ramekar
  • Kyong-Cheul Park
  • Kyu Jin Sa
  • Ju Kyong LeeEmail author
Original Paper


Transposable elements account for up to 85% of the maize genome and have significant implications in crop-improvement and evolutionary analyses. The Mutator (Mu) transposon superfamily, a class of DNA transposons, comprises the most complex and active elements in the maize genome, suggesting a special role in plant evolution. Here, we designed a set of Mu-specific primers based on terminal invert repeats and used a transposon display (TD) method for genotyping. We analyzed the distribution pattern of Mu insertions in teosinte (wild relative), sorghum (distant relative), and domesticated maize accessions (dent, sweet, and waxy). The MU-TD analysis suggested the presence of high polymorphic insertions among the species and subspecies, indicating the utility of the method in studying genetic variation and species relationships. Furthermore, we analyzed 80 maize recombinant inbred line populations. Mu-TD generated an average of 60% Mu-anchored polymorphic fragments in which insertions appeared to be segregating in significantly high numbers. The amplification profile was highly reproducible, confirming the utility of Mu elements as a new set of TD markers for developing high-density genetic maps.


Transposable elements Mutator Terminal invert repeats Molecular markers Transposon display 



This study was supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project Title #PJ01177601, Project #PJ011776), Rural Development Administration, Republic of Korea.

Supplementary material

12033_2018_118_MOESM1_ESM.jpg (439 kb)
Online Resource 1—Mu-specific primer designing scheme. a) Grouping of TIR sequences based on a phylogenetic tree, b) TIR regions were further subgrouped and were aligned to obtain a consensus region, c) Primers were designed based on the consensus region covering the TIR group (JPG 439 KB)


  1. 1.
    Saxena, R. K., Edwards, D., & Varshney, R. K. (2014). Structural variations in plant genomes. Briefings in Functional Genomics, 13(4), 296–307.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Springer, N. M., Ying, K., Fu, Y., Ji, T., Yeh, C. T., Jia, Y., et al. (2009). Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genetics, 5(11), e1000734.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tenaillon, M. I., Hollister, J. D., & Gaut, B. S. (2010). A triptych of the evolution of plant transposable elements. Trends in Plant Science, 15(8), 471–478.CrossRefPubMedGoogle Scholar
  4. 4.
    Lisch, D. (2013). How important are transposons for plant evolution? Nature Reviews Genetics, 14(1), 49–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Studer, A., Zhao, Q., Ross-Ibarra, J., & Doebley, J. (2011). Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 43(11), 1160–1163.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang, Q., Li, Z., Li, W., Ku, L., Wang, C., Ye, J., et al. (2013). CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 16969–16974.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Castelletti, S., Tuberosa, R., Pindo, M., & Salvi, S. (2014). A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3, 4(5), 805–812.CrossRefPubMedGoogle Scholar
  8. 8.
    Meyer, R. S., & Purugganan, M. D. (2013). Evolution of crop species: Genetics of domestication and diversification. Nature Reviews Genetics, 14(12), 840–852.CrossRefPubMedGoogle Scholar
  9. 9.
    Strable, J., & Scanlon, M. J. (2009). Maize (Zea mays): A model organism for basic and applied research in plant biology. Cold Spring Harbor Protocols, 2009(10), pdb-emo132.CrossRefPubMedGoogle Scholar
  10. 10.
    Nannas, N. J., & Dawe, R. K. (2015). Genetic and genomic toolbox of Zea mays. Genetics, 199(3), 655–669.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326(5956), 1112–1115.CrossRefPubMedGoogle Scholar
  12. 12.
    Vitte, C., Fustier, M. A., Alix, K., & Tenaillon, M. I. (2014). The bright side of transposons in crop evolution. Briefings in Functional Genomics, 13(4), 276–295.CrossRefPubMedGoogle Scholar
  13. 13.
    Hufford, M. B., Bilinski, P., Pyhajarvi, T., & Ross-Ibarra, J. (2012). Teosinte as a model system for population and ecological genomics. Trends in Genetics, 28(12), 606–615.CrossRefPubMedGoogle Scholar
  14. 14.
    Tenaillon, M. I., Hufford, M. B., Gaut, B. S., & Ross-Ibarra, J. (2011). Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biology and Evolution, 3, 219–229.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., et al. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12), 973–982.CrossRefPubMedGoogle Scholar
  16. 16.
    Jiang, J., Birchler, J. A., Parrott, W. A., & Dawe, R. K. (2003). A molecular view of plant centromeres. Trends in Plant Science, 8(12), 570–575.CrossRefPubMedGoogle Scholar
  17. 17.
    Bennetzen, J. L., Ma, J., & Devos, K. M. (2005). Mechanisms of recent genome size variation in flowering plants. Annals of Botany, 95(1), 127–132.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dooner, H. K., & Weil, C. F. (2007). Give-and-take: interactions between DNA transposons and their host plant genomes. Current Opinion in Genetics & Development, 17(6), 486–492.CrossRefGoogle Scholar
  19. 19.
    Munoz-Lopez, M., & Garcia-Perez, J. L. (2010). DNA transposons: Nature and applications in genomics. Current Genomics, 11(2), 115–128.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Robertson, D. S. (1978). Characterization of a mutator system in maize. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 51(1), 21–28.CrossRefGoogle Scholar
  21. 21.
    Bennetzen, J. L. (1996). The mutator transposable element system of maize. Current Topics in Microbiology and Immunology, 204, 195–229.PubMedGoogle Scholar
  22. 22.
    Zhong, W., Zhang, M., Yang, L., Wang, M., Zheng, Y., Yang, W., & Gao, Y. (2012). Isolating the mutator transposable element insertional mutant gene mio16 of maize using double selected amplification of insertion flanking fragments (DSAIFF). Journal of Integrative Agriculture, 11(10), 1592–1600.CrossRefGoogle Scholar
  23. 23.
    Ohtsu, K., Hirano, H. Y., Tsutsumi, N., Hirai, A., & Nakazono, M. (2005). Anaconda, a new class of transposon belonging to the Mu superfamily, has diversified by acquiring host genes during rice evolution. Molecular Genetics and Genomics, 274(6), 606–615.CrossRefPubMedGoogle Scholar
  24. 24.
    Luehrsen, K. R., & Walbot, V. (1990). Insertion of Mu1 elements in the first intron of the Adh1-S gene of maize results in novel RNA processing events. The Plant cell, 2(12), 1225–1238.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen, W., VanOpdorp, N., Fitzl, D., Tewari, J., Friedemann, P., Greene, T., Thompson, S., Kumpatla, S., & Zheng, P. (2012). Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize. Plant Molecular Biology, 80(3), 289–297.CrossRefPubMedGoogle Scholar
  26. 26.
    Barkan, A., & Martienssen, R. A. (1991). Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proceedings of the National Academy of Sciences of the United States of America, 88(8), 3502–3506.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Settles, A. M., Baron, A., Barkan, A., & Martienssen, R. A. (2001). Duplication and suppression of chloroplast protein translocation genes in maize. Genetics, 157(1), 349–360.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Schneeberger, R. G., Becraft, P. W., Hake, S., & Freeling, M. (1995). Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes & Development, 9(18), 2292–2304.CrossRefGoogle Scholar
  29. 29.
    Muehlbauer, G. J., Fowler, J. E., Girard, L., Tyers, R., Harper, L., & Freeling, M. (1999). Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. Plant Physiology, 119(2), 651–662.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hirsch, C. D., & Springer, N. M. (2017). Transposable element influences on gene expression in plants. Biochimica et Biophysica Acta, 1860(1), 157–165.CrossRefPubMedGoogle Scholar
  31. 31.
    Diao, X. M., & Lisch, D. (2006). Mutator transposon in maize and MULEs in the plant genome. Yi Chuan Xue Bao, 33(6), 477–487.PubMedGoogle Scholar
  32. 32.
    Lisch, D. (2015). Mutator and MULE transposons. Microbiology Spectrum. Scholar
  33. 33.
    Juretic, N., Hoen, D. R., Huynh, M. L., Harrison, P. M., & Bureau, T. E. (2005). The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Research, 15(9), 1292–1297.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jiang, N., Bao, Z., Zhang, X., Eddy, S. R., & Wessler, S. R. (2004). Pack-MULE transposable elements mediate gene evolution in plants. Nature, 431(7008), 569–573.CrossRefPubMedGoogle Scholar
  35. 35.
    Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376.CrossRefPubMedGoogle Scholar
  36. 36.
    Wright, S. I., Le, Q. H., Schoen, D. J., & Bureau, T. E. (2001). Population dynamics of an Ac-like transposable element in self- and cross-pollinating Arabidopsis. Genetics, 158(3), 1279–1288.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Lisch, D. (2002). Mutator transposons. Trends in Plant Science, 7(11), 498–504.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang, Y., Xu, M., Deng, D., & Bian, Y. (2008). Maize mutator transposon. Frontiers of Agriculture in China, 2(4), 396–403.CrossRefGoogle Scholar
  39. 39.
    Beadle, G. W. (1932). Studies of Euchlaena and its hybrids with Zea. Zeitschrift für Induktive Abstammungs-und Vererbungslehre, 62(1), 291–304.Google Scholar
  40. 40.
    Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, G. J., Buckler, E., & Doebley, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6080–6084.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hufford, M. B., Lubinksy, P., Pyhajarvi, T., Devengenzo, M. T., Ellstrand, N. C., & Ross-Ibarra, J. (2013). The genomic signature of crop-wild introgression in maize. PLoS Genetics, 9(5), e1003477.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lai, J., Li, R., Xu, X., Jin, W., Xu, M., Zhao, H., et al. (2010). Genome-wide patterns of genetic variation among elite maize inbred lines. Nature Genetics, 42(11), 1027–1030.CrossRefPubMedGoogle Scholar
  43. 43.
    Springer, N. M., & Stupar, R. M. (2007). Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Research, 17(3), 264–275.CrossRefPubMedGoogle Scholar
  44. 44.
    Sa, K. J., Park, J. Y., Park, K.-C., & Lee, J. K. (2012). Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers. Genes & Genomics, 34(2), 157–164.CrossRefGoogle Scholar
  45. 45.
    Beavis, W. D., & Grant, D. (1991). A linkage map based on information from four F2 populations of maize (Zea mays L.). Theoretical and Applied Genetics, 82(5), 636–644.CrossRefPubMedGoogle Scholar
  46. 46.
    Gardiner, J. M., Coe, E. H., Melia-Hancock, S., Hoisington, D. A., & Chao, S. (1993). Development of a core RFLP map in maize using an immortalized F2 population. Genetics, 134(3), 917–930.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Castiglioni, P., Ajmone-Marsan, P., van Wijk, R., & Motto, M. (1999). AFLP markers in a molecular linkage map of maize: Codominant scoring and linkage group ditsribution. Theoretical and Applied Genetics, 99(3–4), 425–431.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang, F., Wan, X. Q., & Pan, G. T. (2006). QTL mapping of Fusarium moniliforme ear rot resistance in maize. 1. Map construction with microsatellite and AFLP markers. Journal of Applied Genetics, 47(1), 9–15.CrossRefPubMedGoogle Scholar
  49. 49.
    Casa, A. M., Brouwer, C., Nagel, A., Wang, L., Zhang, Q., Kresovich, S., & Wessler, S. R. (2000). The MITE family heartbreaker (Hbr): Molecular markers in maize. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 10083–10089.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lu, H., Romero-Severson, J., & Bernardo, R. (2002). Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics, 105(4), 622–628.CrossRefPubMedGoogle Scholar
  51. 51.
    Pradhan, A. K., Gupta, V., Mukhopadhyay, A., Arumugam, N., Sodhi, Y. S., & Pental, D. (2003). A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theoretical and Applied Genetics, 106(4), 607–614.CrossRefPubMedGoogle Scholar
  52. 52.
    Liu, G., Bernhardt, J. L., Jia, M. H., Wamishe, Y. A., & Jia, Y. (2008). Molecular characterization of the recombinant inbred line population derived from a Japonica-Indica rice cross. Euphytica, 159(1), 73–82.CrossRefGoogle Scholar
  53. 53.
    Zhu, C., Wang, C., & Zhang, Y. M. (2007). Modeling segregation distortion for viability selection. I. Reconstruction of linkage maps with distorted markers. Theoretical and Applied Genetics, 114(2), 295–305.CrossRefPubMedGoogle Scholar
  54. 54.
    Taylor, D. R., & Ingvarsson, P. K. (2003). Common features of segregation distortion in plants and animals. Genetica, 117(1), 27–35.CrossRefPubMedGoogle Scholar
  55. 55.
    Lee, J. K., Park, J. Y., Kim, J. H., Kwon, S. J., Shin, J. H., Hong, S. K., Min, H. K., & Kim, N. S. (2006). Genetic mapping of the Isaac-CACTA transposon in maize. Theoretical and Applied Genetics, 113(1), 16–22.CrossRefPubMedGoogle Scholar
  56. 56.
    Kwon, S. J., Park, K. C., Kim, J. H., Lee, J. K., & Kim, N. S. (2005). Rim 2/Hipa CACTA transposon display: A new genetic marker technique in Oryza species. BMC Genetics, 6, 15.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rahul Vasudeo Ramekar
    • 1
  • Kyong-Cheul Park
    • 2
  • Kyu Jin Sa
    • 1
  • Ju Kyong Lee
    • 1
    Email author
  1. 1.Department of Applied Plant Sciences, College of Agriculture and Life SciencesKangwon National UniversityChuncheonSouth Korea
  2. 2.Department of Agriculture and Life IndustryKangwon National UniversityChuncheonSouth Korea

Personalised recommendations