Molecular Biotechnology

, Volume 60, Issue 11, pp 833–842 | Cite as

A Novel Molecular Design for a Hybrid Phage-DNA Construct Against DKK1

  • Saeed Khalili
  • Mohamad Javad RasaeeEmail author
  • Taravat Bamdad
  • Maysam Mard-Soltani
  • Majid Asadi Ghalehni
  • Abolfazl Jahangiri
  • Mohammad Hassan Pouriayevali
  • Mohammad Reza Aghasadeghi
  • Fatemeh Malaei
Original Paper


Nucleic acid immunization has recently exhibited a great promise for immunotherapy of various diseases. However, it is now clear that powerful strategies are imminently needed to improve their efficiency. In this regard, whole bacteriophage particles have been described as efficient DNA vaccine delivery vehicles, capable of circumventing the limitations of naked DNA immunization. Moreover, phage particles could be engineered to display specific peptides on their surfaces. Given these inherent characteristics of phages, we have designed a novel hybrid phage-DNA immunization vector using both M13 and pAAV plasmid elements. Following the construction and in vitro confirmation of the designed vectors, they were used for comparative mice immunization, carrying the same DNA sequence. The results indicated the efficacy of the designed hybrid phage particles, to elicit higher humoral immunity, in comparison to conventional DNA-immunization vectors (pCI). In light of these findings, it could be concluded that using adeno-associated virus (AAV) expression cassette along with displaying TAT peptide on the surface of the phage particle could be deemed as an appealing strategy to enhance the DNA-immunization and vaccination efficacy.


DNA vaccination Phage-DNA vaccination Peptide display DKK1 TAT peptide 



The authors wish to thank Tarbiat Modares University for supporting the conduct of this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Research Involving Human Participants and/or Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

12033_2018_115_MOESM1_ESM.docx (690 kb)
Supplementary material 1 (DOCX 690 KB)


  1. 1.
    Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A., & Felgner, P. L. (1990). Direct gene transfer into mouse muscle in vivo. Science, 247(4949 Pt 1), 1465–1468.CrossRefPubMedGoogle Scholar
  2. 2.
    Tang, D. C., DeVit, M., & Johnston, S. A. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature, 356(6365), 152–154.CrossRefPubMedGoogle Scholar
  3. 3.
    Yang, J., Li, Y., Jin, S., Xu, J., Wang, P. C., Liang, X. J., & Zhang, X. (2015). Engineered biomaterials for development of nucleic acid vaccines. Biomaterials Research, 19, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Khalili, S., Mohammadpour, H., Barough, M. S., & Kokhaei, P. (2016). ILP-2 modeling and virtual screening of an FDA-approved library: A possible anticancer therapy. Turkish Journal of Medical Sciences, 46(4), 1135–1143.CrossRefPubMedGoogle Scholar
  5. 5.
    Khalili, S., Rasaee, M., & Bamdad, T. (2017). 3D structure of DKK1 indicates its involvement in both canonical and non-canonical Wnt pathways. Molecular Biology, 51(1), 155–166.CrossRefGoogle Scholar
  6. 6.
    Khalili, S., Zakeri, A., Hashemi, Z. S., Masoumikarimi, M., Manesh, M. R. R., Shariatifar, N., & Sani, M. J. (2017). Structural analyses of the interactions between the thyme active ingredients and human serum albumin. Turkish Journal of Biochemistry, 42(4), 459–467.CrossRefGoogle Scholar
  7. 7.
    Khalili, S., Rasaee, M. J., Mousavi, S. L., Amani, J., Jahangiri, A., & Borna, H. (2017). In silico prediction and in vitro verification of a novel multi-epitope antigen for HBV detection. Molecular Genetics, Microbiology and Virology, 32(4), 230–240.CrossRefGoogle Scholar
  8. 8.
    Mard-Soltani, M., Rasaee, M. J., Khalili, S., Sheikhi, A., Hedayati, M., Ghaderi-Zefrehi, H., & Alasvand, M. (2018). The effect of differentially designed fusion proteins to elicit efficient anti-human thyroid stimulating hormone immune responses. Iranian Journal of Allergy, Asthma and Immunology, 17(2), 158–170.Google Scholar
  9. 9.
    Jahangiri, A., Amani, J., & Halabian, R. (2017). In silico analyses of Staphylococcal enterotoxin B as a DNA vaccine for cancer therapy. International Journal of Peptide Research and Therapeutics, 24, 1–12.Google Scholar
  10. 10.
    Jahangiri, A., Rasooli, I., Owlia, P., Fooladi, A. A. I., & Salimian, J. (2018). An integrative in silico approach to the structure of Omp33-36 in Acinetobacter baumannii. Computational Biology And Chemistry, 72, 77–86.CrossRefPubMedGoogle Scholar
  11. 11.
    Jahangiri, A., Rasooli, I., Owlia, P., Fooladi, A. A. I., & Salimian, J. (2018). Highly conserved exposed immunogenic peptides of Omp34 against Acinetobacter baumannii: An innovative approach. Journal of Microbiological Methods, 144, 79–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Clark, J. R., & March, J. B. (2004). Bacteriophage-mediated nucleic acid immunisation. FEMS Immunology And Medical Microbiology, 40(1), 21–26.CrossRefPubMedGoogle Scholar
  13. 13.
    March, J. B., Clark, J. R., & Jepson, C. D. (2004). Genetic immunisation against hepatitis B using whole bacteriophage lambda particles. Vaccine, 22(13–14), 1666–1671.CrossRefPubMedGoogle Scholar
  14. 14.
    Jafari, N., & Abediankenari, S. (2015). Phage particles as vaccine delivery vehicles: Concepts, applications and prospects. Asian Pacific Journal of Cancer Prevention, 16(18), 8019–8029.CrossRefPubMedGoogle Scholar
  15. 15.
    Clark, J. R., & March, J. B. (2006). Bacteriophages and biotechnology: Vaccines, gene therapy and antibacterials. Trends in Biotechnology, 24(5), 212–218.CrossRefPubMedGoogle Scholar
  16. 16.
    Sartorius, R., Russo, D., D’Apice, L., & De Berardinis, P. (2012) Filamentous bacteriophages: An antigen and gene delivery system. In S. Baschieri (ed.), Innovation in vaccinology: From design, through to delivery and testing (pp. 123–134).Dordrecht: Springer.CrossRefGoogle Scholar
  17. 17.
    Hajitou, A., Trepel, M., Lilley, C. E., Soghomonyan, S., Alauddin, M. M., Marini, F. C., Restel, B. H., Ozawa, M. G., Moya, C. A., & Rangel, R. (2006). A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell, 125(2), 385–398.CrossRefPubMedGoogle Scholar
  18. 18.
    Kagey, M. H., & He, X. (2017). Rationale for targeting the Wnt signaling modulator DKK1 for oncology. British Journal of Pharmacology, 174(24), 4637–4650CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chambers, R. S., & Johnston, S. A. (2003). High-level generation of polyclonal antibodies by genetic immunization. Nature Biotechnology, 21(9), 1088–1092.CrossRefPubMedGoogle Scholar
  20. 20.
    Wu, Y., Wan, Y., Bian, J., Zhao, J., Jia, Z., Zhou, L., Zhou, W., & Tan, Y. (2002). Phage display particles expressing tumor-specific antigens induce preventive and therapeutic anti-tumor immunity in murine p815 model. International Journal Of Cancer, 98(5), 748–753.CrossRefPubMedGoogle Scholar
  21. 21.
    Coia, G., Hudson, P. J., & Irving, R. A. (2001). Protein affinity maturation in vivo using E. coli mutator cells. Journal of Immunological Methods, 1(251), 187–193.CrossRefGoogle Scholar
  22. 22.
    Nag, A., Datta, A., Yoo, K., Bhattacharyya, D., Chakrabortty, A., Wang, X., Slagle, B. L., Costa, R. H., & Raychaudhuri, P. (2001). DDB2 induces nuclear accumulation of the hepatitis B virus X protein independently of binding to DDB1. Journal of Virology, 75(21), 10383–10392.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Panina-Bordignon, P., Tan, A., Termijtelen, A., Demotz, S., Corradin, G., & Lanzavecchia, A. (1989). Universally immunogenic T cell epitopes: Promiscuous binding to human MHC class II and promiscuous recognition by T cells. European Journal Of Immunology, 19(12), 2237–2242.CrossRefPubMedGoogle Scholar
  24. 24.
    Terskikh, A. V., Le Doussal, J.-M., Crameri, R., Fisch, I., Mach, J.-P., & Kajava, A. V. (1997). “Peptabody”: A new type of high avidity binding protein. Proceedings of the National Academy of Sciences, 94(5), 1663–1668.CrossRefGoogle Scholar
  25. 25.
    Clair, N. S., Shenoy, B., Jacob, L. D., & Margolin, A. L. (1999). Cross-linked protein crystals for vaccine delivery. Proceedings of the National Academy of Sciences, 96(17), 9469–9474.CrossRefGoogle Scholar
  26. 26.
    Barbacid, M., Breitman, M., Lauver, A., Long, L., Vogt, P., Beemon, K., & Wang, L. (1982). Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature, 298, 347.CrossRefGoogle Scholar
  27. 27.
    Hashemi, H., Bamdad, T., Jamali, A., Pouyanfard, S., & Mohammadi, M. G. (2010). Evaluation of humoral and cellular immune responses against HSV-1 using genetic immunization by filamentous phage particles: A comparative approach to conventional DNA vaccine. Journal of Virological Methods, 163(2), 440–444.CrossRefPubMedGoogle Scholar
  28. 28.
    Hajitou, A., Trepel, M., Lilley, C. E., Soghomonyan, S., Alauddin, M. M., Marini, F. C. 3rd, Restel, B. H., Ozawa, M. G., Moya, C. A., Rangel, R., Sun, Y., Zaoui, K., Schmidt, M., von Kalle, C., Weitzman, M. D., Gelovani, J. G., Pasqualini, R., & Arap, W. (2006). A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell, 125(2), 385–398.CrossRefPubMedGoogle Scholar
  29. 29.
    Hajitou, A., Rangel, R., Trepel, M., Soghomonyan, S., Gelovani, J. G., Alauddin, M. M., Pasqualini, R., & Arap, W. (2007). Design and construction of targeted AAVP vectors for mammalian cell transduction. Nature Protocols, 2(3), 523–531.CrossRefPubMedGoogle Scholar
  30. 30.
    Foged, C., & Nielsen, H. M. (2008). Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opinion on Drug Delivery, 5(1), 105–117.CrossRefPubMedGoogle Scholar
  31. 31.
    Marschall, A. L., Frenzel, A., Schirrmann, T., Schungel, M., & Dubel, S. (2011). Targeting antibodies to the cytoplasm. mAbs, 3(1), 3–16.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gump, J. M., & Dowdy, S. F. (2007). TAT transduction: The molecular mechanism and therapeutic prospects. Trends in Molecular Medicine, 13(10), 443–448.CrossRefPubMedGoogle Scholar
  33. 33.
    Richard, J. P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B., & Chernomordik, L. V. (2005). Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. The Journal of Biological Chemistry, 280(15), 15300–15306.CrossRefPubMedGoogle Scholar
  34. 34.
    Ferrari, A., Pellegrini, V., Arcangeli, C., Fittipaldi, A., Giacca, M., & Beltram, F. (2003). Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Molecular Therapy: The Journal of the American Society of Gene Therapy, 8(2), 284–294.CrossRefGoogle Scholar
  35. 35.
    Eguchi, A., Akuta, T., Okuyama, H., Senda, T., Yokoi, H., Inokuchi, H., Fujita, S., Hayakawa, T., Takeda, K., Hasegawa, M., & Nakanishi, M. (2001). Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. The Journal of Biological Chemistry, 276(28), 26204–26210.CrossRefPubMedGoogle Scholar
  36. 36.
    Mukai, Y., Sugita, T., Yamato, T., Yamanada, N., Shibata, H., Imai, S., Abe, Y., Nagano, K., Nomura, T., Tsutsumi, Y., Kamada, H., Nakagawa, S., & Tsunoda, S. (2006). Creation of novel protein transduction domain (PTD) mutants by a phage display-based high-throughput screening system. Biological & Pharmaceutical Bulletin, 29(8), 1570–1574.CrossRefGoogle Scholar
  37. 37.
    Wang, S., Zhang, C., Zhang, L., Li, J., Huang, Z., & Lu, S. (2008). The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine, 26(17), 2100–2110.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kutzler, M. A., & Weiner, D. B. (2008). DNA vaccines: Ready for prime time? Nature Reviews Genetics, 9(10), 776–788.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ou, C., Tian, D., Ling, Y., Pan, Q., He, Q., Eko, F. O., & He, C. (2013). Evaluation of an ompA-based phage-mediated DNA vaccine against Chlamydia abortus in piglets. International Immunopharmacology, 16(4), 505–510.CrossRefPubMedGoogle Scholar
  40. 40.
    Ling, Y., Liu, W., Clark, J. R., March, J. B., Yang, J., & He, C. (2011). Protection of mice against Chlamydophila abortus infection with a bacteriophage-mediated DNA vaccine expressing the major outer membrane protein. Veterinary Immunology and Immunopathology, 144(3–4), 389–395.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang, X., Liu, S., Li, S., Du, Y., Dou, Y., Li, Z., Yuan, H., & Zhao, W. (2015). Designation of a novel DKK1 multiepitope DNA vaccine and inhibition of bone loss in collagen-induced arthritic mice. BioMed Research International. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Saeed Khalili
    • 1
    • 2
  • Mohamad Javad Rasaee
    • 2
    Email author
  • Taravat Bamdad
    • 3
  • Maysam Mard-Soltani
    • 4
  • Majid Asadi Ghalehni
    • 5
  • Abolfazl Jahangiri
    • 6
  • Mohammad Hassan Pouriayevali
    • 7
  • Mohammad Reza Aghasadeghi
    • 7
  • Fatemeh Malaei
    • 2
  1. 1.Department of Biology SciencesShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Department of Medical Biotechnology, Faculty of Medical Sciences, School of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Virology, School of Medical SciencesTarbiat Modares UniversityTehranIran
  4. 4.Department of Clinical Biochemistry, Faculty of Medical SciencesDezful University of Medical SciencesDezfulIran
  5. 5.Department of Medical Biotechnology, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  6. 6.Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
  7. 7.Department of Hepatitis and AIDSPasteur Institute of IranTehranIran

Personalised recommendations