Molecular Biotechnology

, Volume 60, Issue 9, pp 670–680 | Cite as

Transcriptional Study of the RsmZ-sRNAs and Their Relationship to the Biosynthesis of Alginate and Alkylresorcinols in Azotobacter vinelandii

  • Liliana López-Pliego
  • Liliana García-Ramírez
  • Emma Aurora Cruz-Gómez
  • Patricia Domínguez-Ojeda
  • Alejandra López-Pastrana
  • Luis Ernesto Fuentes-Ramírez
  • Cinthia Núñez
  • Miguel CastañedaEmail author
Original Paper


The GacS/A system in Azotobacter vinelandii regulates alginate and alkylresorcinols production through RsmZ1, a small regulatory RNA (sRNA) that releases the translational repression of the algD and arpR mRNAs caused by the RsmA protein. In the Pseudomonadaceae family, the Rsm-sRNAs are grouped into three families: RsmX, RmsY and RsmZ. Besides RsmZ1, A. vinelandii has six other isoforms belonging to the RsmZ family and another one to the RsmY. Environmental signals controlling rsmsRNAs genes in A. vinelandii are unknown. In this work, we present a transcriptional study of the A. vinelandii rsmZ1–7-sRNAs genes, whose transcriptional profiles showed a differential expression pattern, but all of them exhibited their maximal expression at the stationary growth phase. Furthermore, we found that succinate promoted higher expression levels of all the rsmZ1–7 genes compared to glycolytic carbon sources. Single mutants of the rsmZ-sRNAs family were constructed and their impact on alginate production was assessed. We did not observe correlation between the alginate phenotype of each rsmZ-sRNA mutant and the expression level of the corresponding sRNA, which suggests the existence of additional factors affecting their impact on alginate production. Similar results were found in the regulation exerted by the RsmZ-sRNAs on alkylresorcinol synthesis.


Azotobacter Alginate Alkylresorcinols RsmZ GacS/A 



Funding was provided by Benemérita Universidad Autónoma de Puebla (Grant No. Apoyo extraordinario a proyectos de investigación VIEP2016-17).

Supplementary material

12033_2018_102_MOESM1_ESM.eps (2.2 mb)
Supplementary Fig. S1. General diagram of the experimental strategy to construct strain EZ3, carrying a ΔrsmZ3::Gm mutation. The rsmZ3 gene in plasmid pGEMrsmZ3 is indicated by a red square. A similar procedure was followed to construct deletion mutants in genes rsmZ4-7, in some cases using different resistance cassettes. Figures are not at scale. (EPS 2261 KB)
12033_2018_102_MOESM2_ESM.eps (2.4 mb)
Supplementary Fig. S2. Genomic context and location of the rsmZ1-7 genes in A. vinelandii strain DJ. The rsmZ genes are represented in red; the flanking genes in green and the protein CDS are in cyan. Visualization of the sequences was generated used the software Artemis (Carver T. et al (2012). Bioinformatics 28(4), 464-469). (EPS 2487 KB)
12033_2018_102_MOESM3_ESM.eps (2.6 mb)
Supplementary Fig. S3. Alignment of the A. vinelandii rsmZ1-7 genes and their regulatory regions. Predicted transcriptional start sites (+1) and the -10 region of the putative promoters are indicated. Location of putative GacA binding boxes and the predicted IHF (yellow) and H-NS (green) recognition sites are indicated. RNAse E cleavage sites are marked in grey squares. (EPS 2699 KB)
12033_2018_102_MOESM4_ESM.eps (675 kb)
Supplementary Fig. S4. Effect of glycolytic or gluconeogenic carbon sources on the activity of a constitutively-expressed promoter. Strain EgyrAT, carrying a transcriptional fusion of the gyrA promoter with the gusA reporter gene (PgyrA-gusA) was grown in liquid Burk’s medium amended with the indicated carbon sources. Cells were collected after 48 h and the activity of ß-glucuronidase was measured. Bars of standard deviation from three independent experiments (biological replicates) are shown. (EPS 674 KB)
12033_2018_102_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (DOCX 15 KB)


  1. 1.
    Lapouge, K., Schubert, M., Allain, F. H. T., & Haas, D. (2008). Gac/Rsm signal transduction pathway of γ-proteobacteria, from RNA recognition to regulation of social behaviour. Molecular Microbiology, 67(2), 241–253.CrossRefPubMedGoogle Scholar
  2. 2.
    Mukherjee, A., Cui, Y., Liu, Y., Dumenyo, C. K., & Chatterjee, A. K. (1996). Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA, repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology, 142(2), 427–434.CrossRefPubMedGoogle Scholar
  3. 3.
    Kay, E., Dubuis, C., & Haas, D. (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proceedings of the National Academy of Sciences USA, 102(46), 17136–17141.CrossRefGoogle Scholar
  4. 4.
    Kay, E., Humair, B., Dénervaud, V., Riedel, K., Spahr, S., Eberl, L., et al. (2006). Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. Journal of Bacteriology, 188(16), 6026–6033.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Romeo, T. (1998). Global regulation by the small RNA-binding protein CsrA and the non- coding RNA molecule CsrB. Molecular Microbiology, 29(6), 1321–1330.CrossRefPubMedGoogle Scholar
  6. 6.
    Sabnis, N. A., Yang, H., & Romeo, T. (1995). Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. Journal of Biological Chemistry, 270(49), 29096–29104.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang, X., Dubey, A. K., Suzuki, K., Baker, C. S., Babitzke, P., & Romeo, T. (2005). CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Molecular Microbiology, 56(6), 1648–1663.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu, M. Y., Yang, H., & Romeo, T. (1995). The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. Journal of Bacteriology, 177(10), 2663–2672.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Altier, C., Suyemoto, M., & Lawhon, S. D. (2000). Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. Infection and Immunity, 68(12), 6790–6797.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moll, S., Schneider, D. J., Stodghill, P., Myers, C. R., Cartinhour, S. W., & Filiatrault, M. J. (2010). Construction of an rsmX co-variance model and identification of five rsmX non-coding RNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biology, 7(5), 508–516.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Heeb, S., Blumer, C., & Haas, D. (2002). Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. Journal of Bacteriology, 184(4), 1046–1056.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Valverde, C., Heeb, S., Keel, C., & Haas, D. (2003). RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Molecular Microbiology, 50(4), 1361–1379.CrossRefPubMedGoogle Scholar
  13. 13.
    Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L., et al. (2009). The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Molecular Microbiology, 73(3), 434–445.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Manzo, J., Cocotl-Yañez, M., Tzontecomani, T., Martínez, V. M., Bustillos, R., Velásquez, C., et al. (2012). Post-transcriptional regulation of the alginate biosynthetic gene algD by the Gac/Rsm system in Azotobacter vinelandii. Journal of Molecular Microbiology and Biotechnology, 21(3–4), 146–159.Google Scholar
  15. 15.
    Hernández-Eligio, A., Moreno, S., Castellanos, M., Castañeda, M., Núñez, C., Muriel-Millán, L. F., et al. (2012). RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii. Microbiology, 158, 1953–1963.CrossRefPubMedGoogle Scholar
  16. 16.
    Babitzke, P., & Romeo, T. (2007). CsrB sRNA family, sequestration of RNA-binding regulatory proteins. Current Opinion in Microbiology, 10(2), 156–163.CrossRefPubMedGoogle Scholar
  17. 17.
    Vakulskas, C. A., Potts, A. H., Babitzke, P., Ahmer, B. M. M., & Romeo, T. (2015). Regulation of bacterial virulence by Csr (Rsm) systems. Microbiology and Molecular Biology Reviews, 79(2), 193–224.CrossRefPubMedGoogle Scholar
  18. 18.
    Humair, B., Wackwitz, B., & Haas, D. (2010). GacA-controlled activation of promoters for small RNA genes in Pseudomonas fluorescens. Applied and Environmental Microbiology, 76(5), 1497–1506.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Martínez, L. C., Martínez-Flores, I., Salgado, H., Fernández-Mora, M., Medina-Rivera, A., Puente, J. L., et al. (2014). In silico identification and experimental characterization of regulatory elements controlling the expression of the Salmonella csrB and csrC genes. Journal of Bacteriology, 196(2), 325–336.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chávez, R. G., Alvarez, A. F., Romeo, T., & Georgellis, D. (2010). The physiological stimulus for the BarA sensor kinase. Journal of Bacteriology, 192(7), 2009–2012.CrossRefPubMedGoogle Scholar
  21. 21.
    Jonas, K., & Melefors, Ö (2009). The Escherichia coli CsrB and CsrC small RNAs are strongly induced during growth in nutrient-poor medium. FEMS Microbiology Letters, 297(1), 80–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Takeuchi, K., Kiefer, P., Reimmann, C., Keel, C., Dubuis, C., Rolli, J., et al. (2009). Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. Journal of Biological Chemistry, 284(50), 34976–34985.CrossRefPubMedGoogle Scholar
  23. 23.
    Zuber, S., Carruthers, F., Keel, C., Mattart, A., Blumer, C., Pessi, G., et al. (2003). GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Molecular Plant–Microbe Interactions, 16(7), 634–644.CrossRefPubMedGoogle Scholar
  24. 24.
    Setubal, J. C., Dos Santos, P., Goldman, B. S., Ertesvåg, H., Espín, G., Rubio, L. M., et al. (2009). Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. Journal of Bacteriology, 191(14), 4534–4545.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Galindo, E., Peña, C., Núñez, C., Segura, D., & Espín, G. (2007). Molecular and bioengineering strategies to improve alginate and polyhydroxyalkanoate production by Azotobacter vinelandii. Microbial Cell Factories, 6, 7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Romero, Y., Guzmán, J., Moreno, S., Cocotl-Yañez, M., Vences-Guzmán, M. A., Castañeda, M., et al. (2016). The GacS/A-RsmA signal transduction pathway controls the synthesis of alkylresorcinol lipids that replace membrane phospholipids during encystment of Azotobacter vinelandii SW136. PLoS ONE, 11(4), 1–19.CrossRefGoogle Scholar
  27. 27.
    Castañeda, M., López-Pliego, L., & Espín, G. (2016) Azotobacter vinelandii small RNAs, their roles in the formation of cysts and other processes. In, non-coding RNAs and inter-kingdom communication. Berlin: Springer p. 67–82.Google Scholar
  28. 28.
    Larsen, B., & Haug, A. (1971). Biosynthesis of alginate. 1. Composition and structure of alginate produced by Azotobacter vinelandii (Lipman). Carbohydrate Research, 17(2), 287–296.CrossRefPubMedGoogle Scholar
  29. 29.
    Kennedy, C., Gamal, R., Humphrey, R., Ramos, J., Brigle, K., & Dean, D. (1986). The nifH, nifM and nifN genes of Azotobacter vinelandii, Characterisation by Tn5 mutagenesis and isolation from pLAFR1 gene banks. MGG Molecular and General Genetics, 205(2), 318–325.CrossRefGoogle Scholar
  30. 30.
    Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of bacteriology, 62(3), 293–300.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Bali, A., Blanco, G., Hill, S., & Kennedy, C. (1992). Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Applied and Environmental Microbiology, 58(5), 1711–1718.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ahumada-Manuel, C. L., Guzman, J., Peña, C., Quiroz-Rocha, E., Espín, G., & Nuñez, C. (2017). The signaling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii. Applied Microbiology and Biotechnology, 101(4), 1521–1534.CrossRefPubMedGoogle Scholar
  33. 33.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning, a Laboratory Manual (2nd edn.). Cold Spring Harbor: Cold Spring Harbor Laboratory.Google Scholar
  34. 34.
    Alexeyev, M. F., Shokolenko, I. N., & Croughan, T. P. (1995). Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene, 160(1), 63–67.CrossRefPubMedGoogle Scholar
  35. 35.
    Muriel-Millán, L. F., Moreno, S., Romero, Y., Bedoya-Pérez, L. P., Castañeda, M., Segura, D., et al. (2015). The unphosphorylated EIIANtr protein represses the synthesis of alkylresorcinols in Azotobacter vinelandii. PLoS ONE, 10(2), 1–14.CrossRefGoogle Scholar
  36. 36.
    Knutson, C. A., & Jeanes, A. A. (1968). New modification of the carbazole analysis, application to heteropolysaccharides. Analytical Biochemistry, 24(3), 460–481.Google Scholar
  37. 37.
    Tłuścik, F., Kazubek, A., & Mejbaum-Katzenellenbogen, W. (1981). Alkylresorcinols in rye (Secale cereale L.) grains. VI. colorimetric micromethod for the determination of alkylresorcinols with the use of diazonium salt, fast blue B. Acta Societatis Botanicorum Poloniae, 50, 645–651.CrossRefGoogle Scholar
  38. 38.
    Wilson, K. J., Sessitsch, A., Corbo, J. C., Giller, K. E., Akkermans, A. D. L., & Jefferson, R. A. (1995). -Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology, 141(7), 1691–1705.CrossRefPubMedGoogle Scholar
  39. 39.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  40. 40.
    Edwards, A. N., Patterson-Fortin, L. M., Vakulskas, C. A., Mercante, J. W., Potrykus, K., Vinella, D., et al. (2011). Circuitry linking the Csr and stringent response global regulatory systems. Molecular Microbiology, 80(6), 1561–1580.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Romero, Y., Moreno, S., Guzman, J., Espín, G., & Segura, D. (2013). Sigma Factor RpoS Controls alkylresorcinol synthesis through ArpR, a LysR-Type regulatory protein, during encystment of Azotobacter vinelandii. Journal of Bacteriology, 195(8), 1834–1844.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Eugene, M., & Barnes, J. (1973). Multiple sites for coupling of glucose transport to the respiratory chain of membrane vesicles from Azotobacter vinelandii. Journal of Biological Chemistry, 248(23), 8120–8125.Google Scholar
  43. 43.
    Morteson, L. E., & Wilson, P. W. (1954). Initial stages in the breakdown of carbohydrates by the Azotobacter vinelandii. Archives of Biochemistry And Biophysics, 53(2), 425–435.CrossRefGoogle Scholar
  44. 44.
    Chavarría, M., Kleijn, R. J., Sauer, U., Pflüger-Grau, K., & de Lorenzo, V. (2012). Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. MBio, 3(2), 1–9.CrossRefGoogle Scholar
  45. 45.
    Galinier, A., & Deutscher, J. (2017). Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate, sugar phosphotransferase system. Journal of Molecular Biology, 429(6), 773–789.CrossRefPubMedGoogle Scholar
  46. 46.
    Pflüger-Grau, K., & de Lorenzo, V. (2014). From the phosphoenolpyruvate phosphotransferase system to selfish metabolism, a story retraced in Pseudomonas putida. FEMS Microbiology Letters, 356(2), 144–153.CrossRefPubMedGoogle Scholar
  47. 47.
    Lee, C. R., Koo, B. M., Cho, S. H., Kim, Y. J., Yoon, M. J., Peterkofsky, A., et al. (2005). Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression. Molecular Microbiology, 58(1), 334–344.CrossRefPubMedGoogle Scholar
  48. 48.
    Aranda Olmedo, I., Marín, P., Ramos, J. L., & Marqués, S. (2018). Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures. Applied and Environmental Microbiology, 72(11), 7418–7421.CrossRefGoogle Scholar
  49. 49.
    Velázquez, F., Pflüger, K., Cases, I., De Eugenio, L. I., & de Lorenzo, V. (2007). The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. Journal of Bacteriology, 189(12), 4529–4533.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Noguez, R., Segura, D., Moreno, S., Hernández, A., Juárez, K., & Espín, G. (2008). Enzyme I NPr, NPr and IIA Ntr are involved in regulation of the poly-beta-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. Journal of Molecular Microbiology and Biotechnology, 15(4), 244–254.CrossRefPubMedGoogle Scholar
  51. 51.
    Shimada, T., Yamamoto, K., & Ishihama, A. (2011). Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. Journal of Bacteriology, 193(3), 649–659.CrossRefPubMedGoogle Scholar
  52. 52.
    Chavarría, M., Durante-Rodríguez, G., Krell, T., Santiago, C., Brezovsky, J., Damborsky, J., et al. (2014). Fructose 1-phosphate is the one and only physiological effector of the Cra (FruR) regulator of Pseudomonas putida. FEBS Open Bio, 4, 377–386.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Esquerré, T., Bouvier, M., Turlan, C., Carpousis, A. J., Girbal, L., & Cocaign-Bousquet, M. (2016). The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli. Scientific Reports, 6, 25057.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Duss, O., Michel, E., Yulikov, M., Schubert, M., Jeschke, G., & Allain, F. H. (2014). Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature, 509(7502), 588–592.CrossRefPubMedGoogle Scholar
  55. 55.
    Sonnleitner, E., Schuster, M., Sorger-domenigg, T., et al. (2006). Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Psedomonas aeruginosa. Molecular Microbiology, 59, 1542–1558.CrossRefPubMedGoogle Scholar
  56. 56.
    Martínez-Salazar, J. M., Moreno, S., Nájera, R., Boucher, J. C., Espín, G., Soberón-Chávez, G., et al. (1996). Characterization of the genes coding for the putative sigma factor algU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. Journal of Bacteriology, 178(7), 1800–1808.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Segura, D., Vite, O., Romero, Y., Moreno, S., Castañeda, M., & Espín, G. (2009). Isolation and characterization of Azotobacter vinelandii mutants impaired in alkylresorcinol synthesis: Alkylresorcinols are not essential for cyst desiccation resistance. Journal of Bacteriology, 191(9), 3142–3148.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mærk, M., Johansen, J., Ertesvåg, H., Drablos, F., & Valla, S. (2014). Safety in numbers: Multiple occurrences of highly similar homologs among Azotobacter vinelandii carbohydrate metabolism proteins probably confer adaptive benefits. BMC Genomics, 15(1), 192.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Liliana López-Pliego
    • 1
  • Liliana García-Ramírez
    • 1
  • Emma Aurora Cruz-Gómez
    • 1
  • Patricia Domínguez-Ojeda
    • 1
  • Alejandra López-Pastrana
    • 1
  • Luis Ernesto Fuentes-Ramírez
    • 1
  • Cinthia Núñez
    • 2
  • Miguel Castañeda
    • 1
    Email author
  1. 1.Centro de Investigaciones en Ciencias Microbiológicas, Instituto de CienciasBenemérita Universidad Autónoma de PueblaPueblaMéxico
  2. 2.Departamento de Microbiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations