Advertisement

Molecular Biotechnology

, Volume 60, Issue 9, pp 665–669 | Cite as

A Graft Mimic Strategy for Verticillium Resistance in Tomato

  • Melora Mackey
  • Alexander Kurosky
  • E. Jane Robb
  • Ross N. Nazar
Original Paper
  • 106 Downloads

Abstract

Grafting vegetables for disease resistance has increased greatly in popularity over the past 10 years. Verticillium wilt of tomato is commonly controlled through grafting of commercial varieties on resistant rootstocks expressing the Ve1 R-gene. To mimic the grafted plant, proteomic analyses in tomato were used to identify a suitable root-specific promoter (TMVi), which was used to express the Ve1-allele in susceptible Craigella (Cs) tomato plants. The results indicate that when infected with Verticillim dahliae, race 1, the transformed plants are comparable to resistant cultivars (Cr) or grafted plants.

Keywords

Plant grafting Proteome Tissue-specific expression Tomato Verticillium wilt Ve R-locus Ve1-gene 

Notes

Acknowledgements

We thank Drs. X. Luo and K.V. Soman (UTMB Proteomics Center) for the peptide mass spectrometry and help with the proteomic analyses. This study was supported by NSERC Canada (R.N.N. and E.J.R.) and NIH, NHLBI (A.K.).

Author Contributions

RNN and JR conceived the experiments and prepared the manuscript, MM conducted the experiments. RNN conducted the data analyses and AK was responsible for the peptide mass spectrometry.

References

  1. 1.
    Rivard, C. L., & Louws, F. J. (2011) Tomato grafting: A new tool for disease resistance and increased productivity. North Carolina: SARE Ag Innovation Bulletin Series.Google Scholar
  2. 2.
    Diwan, N., Fluhr, R., Eshed, Y., Zamir, D., & Tanksley, S. D. (1999). Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae Kleb. race 1. Theoretical and Applied Genetics, 98, 315–319.CrossRefGoogle Scholar
  3. 3.
    Schaible, L., Cannon, O. S., & Waddoups, V. (1951). Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology, 41, 986–990.Google Scholar
  4. 4.
    Xue, G.-P., Rae, A. L., White, R. G., Drenth, J., Richardson, T., & McIntyre, C. L. (2016). A strong root-specific expression system for stable transgene expression in bread wheat. Plant Cell Reports, 35, 469–481.CrossRefGoogle Scholar
  5. 5.
    Chen, P., Lee, B., & Robb, J. (2004). Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiological and Molecular Plant Pathology, 64, 283–291.CrossRefGoogle Scholar
  6. 6.
    Robb, E. J., Shittu, H. O., Soman, K. V., Kurosky, A., & Nazar, R. N. (2012). Elevated defense protein fails to protect tomato against Verticillium dahliae. Planta, 236, 623–633.CrossRefGoogle Scholar
  7. 7.
    Dobinson, K. F., Tenuta, G. K., & Lazarovits, G. (1996). Occurrence of race 2 of Verticillium dahliae in processing fields in southwestern Ontario. Canadian Journal of Plant Pathology, 18, 55–58.CrossRefGoogle Scholar
  8. 8.
    Shittu, H. O., Castroverde, C. D. M., Nazar, R. N., & Robb, J. (2009). Plant-endophyte interplay protects tomato against a virulent Verticillium. Planta, 229, 415–426.CrossRefGoogle Scholar
  9. 9.
    Robb, J., Castroverde, C. D. M., Shittu, H. O., & Nazar, R. N. (2009). Patterns of defence gene expression in the tomato-Verticillium interaction. Botany, 87, 993–1006.CrossRefGoogle Scholar
  10. 10.
    Hu, X., Nazar, R. N., & Robb, J. (1993). Quantification of Verticillium biomass in wilt disease development. Physiological and Molecular Plant Pathology, 42, 23–36.CrossRefGoogle Scholar
  11. 11.
    Castroverde, C. D. M., Xu, X., Blaya Fernandez, J., Nazar, R. N., & Robb, J. (2017). Epistatic influence in tomato ve1-mediated resistance. Plant Biology, 19, 843–847.CrossRefGoogle Scholar
  12. 12.
    McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., & Fraley, R. (1986). Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Reports, 5, 81–84.CrossRefGoogle Scholar
  13. 13.
    Robb, J., Lee, B., & Nazar, R. N. (2007). Gene suppression in a tolerant tomato-vascular pathogen interaction. Planta, 226, 299–309.CrossRefGoogle Scholar
  14. 14.
    Tsai, S. J., & Wiltbank, M. C. (1996). Quantification of mRNA using competitive RT-PCR with standard-curve methodology. BioTechniques, 21, 862–866.CrossRefGoogle Scholar
  15. 15.
    Hurkman, W. J., & Tanaka, C. K. (1986). Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiology, 81, 802–806.CrossRefGoogle Scholar
  16. 16.
    Pichersky, E., Bernatzky, R., Tanksley, S. D., Cashmore, A. R. (1986) Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 83, 3880–3884.CrossRefGoogle Scholar
  17. 17.
    Sugita, M., Manzara, T., Pichersky, E., Cashmore, A., & Gruissem, W. (1987). Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-l,5-bisphosphate carboxylase/oxygenase from tomato. Molecular and General Genetics, 209, 247–256.CrossRefGoogle Scholar
  18. 18.
    Fradin, E. F., Zhang, Z., Juarez-Ayala, J. C., Castroverde, C. D. M., Nazar, R. N., Robb, J., Liu, C.-M., & Thomma, B. P. H. J. (2009). Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiology, 150, 320–332.CrossRefGoogle Scholar
  19. 19.
    Nazar, R., Xu, X., Blaya Fernandez, J., Shittu, H. O., Kurosky, A., & Robb, E. J. (2018) Defence cascade in Verticillium-infected grafted tomato. Plant Signaling Behavior.  https://doi.org/10.1080/15592324.2018.1475807.Google Scholar
  20. 20.
    Shin, R., An, J. M., Park, C. J., Kim, Y. J., Joo, S., Kim, W. T., & Paek, K.H. (2004). Capsicum annuum tobacco mosaic virus-induced clone 1 expression perturbation alters the plant’s response to ethylene and interferes with the redox homeostasis. The Plant Journal, 37, 186–198.CrossRefGoogle Scholar

Copyright information

© Crown 2018

Authors and Affiliations

  • Melora Mackey
    • 1
  • Alexander Kurosky
    • 2
  • E. Jane Robb
    • 1
  • Ross N. Nazar
    • 1
  1. 1.Department of Molecular and Cellular BiologyUniversity of GuelphGuelphCanada
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of TexasGalvestonUSA

Personalised recommendations