Molecular Biotechnology

, Volume 60, Issue 8, pp 601–607 | Cite as

The Development of Bacterial Carboxylesterase Biological Recognition Elements for Cocaine Detection

  • Suhad A. MustafaEmail author
Original Paper


Enzyme recognition element-based biosensors are very attractive for biosensor application due to a variety of measurable reaction products arising from a catalytic process. In this study, biosensor recognition elements have been developed via engineer bacterial enzymes (carboxylesterases (CEs)) which will used for narcotic detection because of their role in narcotics metabolism. The modification (insertion of cys-tag) allows the enzyme to bind into a transducer surface of a biosensor which will translate the reaction product into the detection system. The results demonstrate the successful isolation, cloning, expression, and purification of recombinant (pnbA1 and pnbA2), and engineered (pnbA1-cys and pnbA2-cys) bacterial carboxylesterases. Enzyme capability to hydrolyse cocaine into benzoylecgonine and methanol was quantified using HPLC. Both enzymes showed broad maximal activity between pH (8.0, 8.5, and 9.0), PnbA1 temperature stability ranging between (25 and 45 °C); however, PnbA2 stability range was (25–40 °C). Insertion of cys-tag at the N-terminal of the enzyme did not limit entrance to the active site which is located at the base of a cavity with dimensions 20 by 13 by 18 Å, and did not prevent substrate hydrolysis. Bacterial carboxylesterases pnbA1 and pnbA2 mimic hCE1 and not hCE2 in its reaction pathways hydrolysing cocaine into benzoylecgonine and methanol rather than ecgonine methyl ester and benzoic acid. These results are the first experimental evidence confirming the capability of bacterial carboxylesterase to hydrolyse cocaine into its main metabolites, therefore opening up the possibility to use these enzymes in numerous biotechnological applications in addition to a cocaine biosensor.


Bacterial carboxylesterases Biological recognition elements Enzymes Cocaine Biosensor 

Supplementary material

12033_2018_98_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 KB)


  1. 1.
    Bencharit, S., Morton, C. L., Howard-Williams, E. L., Danks, M. K., Potter, P. M., & Redinbo, M. R. (2002). Structural insights into CPT-11 activation by mammalian carboxylesterases. Natural Structural Biology, 9, 337–342.CrossRefGoogle Scholar
  2. 2.
    Meghji, K., Ward, O. P., & Araujo, A. (1990). Production, purification, and properties of extracellular carboxyl esterases from Bacillus subtilis NRRL 365. American Society for Microbiology, 56, 3735–3740.Google Scholar
  3. 3.
    Ileperuma, N. R., Marshall, S. D. G., Squire, C. J., Baker, H. M., Oakeshott, J. G., Russell, R. J., Plummer, K. M., Newcomb, R. D., & Baker, E. N. (2007) High-resolution crystal structure of plant carboxylesterases AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraxon. Biochemistry 46, 1851–1859.CrossRefPubMedGoogle Scholar
  4. 4.
    Sayali, K., Patil, S., & Surekha, S. (2013). Microbial esterases: An overview. International Journal of Current Microbiology and Applied Sciences, 2, 135–146.Google Scholar
  5. 5.
    Xie, G., Liu, M., Zhu, H., & Lei, B. (2008). Esterase SeE of Streptococcus equi ssp. equi is a novel nonspecific carboxylic ester hydrolase. FEMS Microbiology Letters, 289, 181–186.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lopes, D. B., Fraga, L. P., Fleuri, L. F., & Macedo, G. A. (2011). Lipases and Esterases—to what extent this classification be applied accurately. Food Science and Technology, 31, 608–613.CrossRefGoogle Scholar
  7. 7.
    Montella, I. R., Schama, R., & Valle, D. (2012). The classification of esterases: An important gene family involved in insecticide resistance—a review. Memórias do Instituto Oswaldo Cruz, 107, 437–449.CrossRefPubMedGoogle Scholar
  8. 8.
    Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., et al. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211.CrossRefPubMedGoogle Scholar
  9. 9.
    Nardini, M., & Dijkstra, B. W. (1999). a/ß hydrolase fold enzymes: The family keeps growing. Current Opinion in Structural Biology, 9, 732–737.CrossRefPubMedGoogle Scholar
  10. 10.
    Pindel, E. V., Kedishvili, N. Y., Abraham, T. L., Brzezinski, M. R., Zhang, A., Dean, R. A., et al. (1997). Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. Journal of Biological Chemistry, 272, 14769–14775.CrossRefPubMedGoogle Scholar
  11. 11.
    Weirdl, M., Morton, C. L., Nguyen, N. K., Redinbo, M. R., & Potter, P. M. (2004). Molecular modeling of CPT-11 metabolism by carboxylesterases (CEs) use of pnb CE as a model. Biochemistry, 43, 1874–1882.CrossRefGoogle Scholar
  12. 12.
    Wheelock, C. E., Phillips, B. M., Anderson, B. S., Miller, J. L., Miller, M. J., et al. (2008). Application of carboxylesterase activity in environmental monitoring and toxicity identification protocol (TIEs). Reviews of Environmental Contamination and Toxicology, 195, 117–178.PubMedGoogle Scholar
  13. 13.
    Singh, B. (2014). Review on microbial carboxylesterase: General properties and role in organophosphate pesticide degradation. Biochemistry and Molecular Biology, 2, 1–6.CrossRefGoogle Scholar
  14. 14.
    Ahmad, S., & Forgash, A. J. (1976). Nonoxidative enzymes in the metabolism of insecticides. Drug Metabolism Reviews, 5, 141–164.CrossRefPubMedGoogle Scholar
  15. 15.
    Leinweber, F. J. (1987). Possible physiological roles of carboxyl ester hydrolases. Drug Metabolism Reviews, 18, 379–439.CrossRefPubMedGoogle Scholar
  16. 16.
    Diczfalusy, M. A., Bjorkkem, I., Einarsson, C., Hillebrant, C. G., & Alexson, S. E. (2001). Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids. The Journal of Lipid Research, 42, 1025–1032.PubMedGoogle Scholar
  17. 17.
    Dolinsky, V. W., Sipione, S., Lehner, R., & Vance, D. E. (2001). The cloning and expression of murine triacylglycerol hydrolase cDNA and the structure of the corresponding gene. Biochimica et Biophysica Acta, 1532, 162–172.CrossRefPubMedGoogle Scholar
  18. 18.
    Becker, A., Bottcher, A., Lackner, K. J., Fehringer, P., Notka, F., & Aslandis, C. (1994). Purification, cloning and expression of a human enzyme with acyl coenzyme A: Cholesterol acyltransferase activity, which is identical to liver carboxylesterase. Arteriosclerosis and Thrombosis, 14, 1346–1355.CrossRefPubMedGoogle Scholar
  19. 19.
    Jatlow, P. I. (1987). Drug of abuse profile: Cocaine. Clinical Chemistry, 33, 66B–71B.PubMedGoogle Scholar
  20. 20.
    Bailey, D. N. (1994). Studies of cocaethylene (Ethylcocaine) formation by human tissues in vitro. Journal of Analytical Toxicology, 18, 13–15.CrossRefPubMedGoogle Scholar
  21. 21.
    Baingana, F., al’Absi, M., Becker, A. E., & Pringle, B. (2015). Global research challenges and opportunities for mental health and substance-use disorders. Nature, 527, S172–S177.CrossRefPubMedGoogle Scholar
  22. 22.
    Holmes, D. (2015). Addition: 4 big questions. Nature, 522, S63.CrossRefPubMedGoogle Scholar
  23. 23.
    Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.CrossRefPubMedGoogle Scholar
  24. 24.
    Ewisa, H. E., Abdelalb, A. T., & Lu, C.-D. (2004). Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene, 329, 187–195.CrossRefGoogle Scholar
  25. 25.
    Bornscheuer, U. T. (2002). Microbial carboxyl esterases: Classification, properties, and application in biocatalysis. FEMS Microbiology Reviews, 26, 73–818.CrossRefPubMedGoogle Scholar
  26. 26.
    Zock, J., Cantwell, C., Swartling, J., Hodges, R., Pohl, T., Sutton, K., Rosteck, P. Jr., McGilvray, D., & Queener, S. (1994). The Bacillus subtilis pnbA gene encoding pnitrobenzyl esterase: Cloning, sequence and high-level expression in Escherichia coli. Gene, 151, 37–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Quax, W. J., & Broekhuizen, C. P. (1994). Development of a new Bacillus carboxyl esterase for use in the resolution of chiral drugs. Applied Microbiology and Biotechnology, 41, 425–431.PubMedGoogle Scholar
  28. 28.
    Moore, J. C., & Arnold, F. H. (1996). Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nature Biotechnology, 14, 458–467.CrossRefPubMedGoogle Scholar
  29. 29.
    Wizard®genomic DNA purification kit. Promega. Technical manual. USA.Google Scholar
  30. 30.
    PCR master mix, Taq DNA Polymerase. Promega. USA.Google Scholar
  31. 31.
    Oakeshott, J. G., Claudianos, C., Russell, R. J., & Robin, G. C. (1999). Carboxyl/cholinesterases: A case study of the evolution of a successful multigene family. BioEssays, 21, 1031–1042.CrossRefPubMedGoogle Scholar
  32. 32.
    Redinbo, M. R., Bencharit, S., & Potter, P. M. (2003). Human carboxylesterase 1: From drug metabolism to drug discovery. Biochemical Society Transactions, 31, 620–624.CrossRefPubMedGoogle Scholar
  33. 33.
    Pindel, E. V., Kedishvili, N. Y., Abraham, T. L., Brzezinski, M. R., Zhang, J., Dean, R. A., et al. (1997). Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. Journal of Biological Chemistry, 272, 14769–14775.CrossRefPubMedGoogle Scholar
  34. 34.
    Imai, T. (2006). Human carboxylesterase isozymes: Catalytic properties and rational drug design. Drug Metabolism and Pharmacokinetics, 21, 173–185.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scientific Research CenterSalahaddin University-ErbilErbilIraq

Personalised recommendations