Molecular Biotechnology

, Volume 60, Issue 8, pp 563–575 | Cite as

Trichomonas vaginalis metalloproteinase TvMP50 is a monomeric Aminopeptidase P-like enzyme

  • Rodrigo Arreola
  • José Luis Villalpando
  • Jonathan Puente-Rivera
  • Jorge Morales-Montor
  • Enrique Rudiño-Piñera
  • María Elizbeth Alvarez-Sánchez
Original Paper


Previously, metalloproteinase was isolated and identified from Trichomonas vaginalis, belonging to the aminopeptidase P-like metalloproteinase subfamily A/B, family M24 of clan MG, named TvMP50. The native and recombinant TvMP50 showed proteolytic activity, determined by gelatin zymogram, and a 50 kDa band, suggesting that TvMP50 is a monomeric active enzyme. This was an unexpected finding since other Xaa-Pro aminopeptidases/prolidases are active as a biological unit formed by dimers/tetramers. In this study, the evolutionary history of TvMP50 and the preliminary crystal structure of the recombinant enzyme determined at 3.4 Å resolution is reported. TvMP50 was shown to be a type of putative, eukaryotic, monomeric aminopeptidase P, and the crystallographic coordinates showed a monomer on a “pseudo-homodimer” array on the asymmetric unit that resembles the quaternary structure of the M24B dimeric family and suggests a homodimeric aminopeptidase P-like enzyme as a likely ancestor. Interestingly, TvMP50 had a modified N-terminal region compared with other Xaa-Pro aminopeptidases/prolidases with three-dimensional structures; however, the formation of the standard dimer is structurally unstable in aqueous solution, and a comparably reduced number of hydrogen bridges and lack of saline bridges were found between subunits A/B, which could explain why TvMP50 portrays monomeric functionality. Additionally, we found that the Parabasalia group contains two protein lineages with a “pita bread” fold; the ancestral monomeric group 1 was probably derived from an ancestral dimeric aminopeptidase P-type enzyme, and group 2 has a probable dimeric kind of ancestral eukaryotic prolidase lineage. The implications of such hypotheses are also presented.


Metalloproteinase Prolidases (Xaa-Pro dipeptidases, EC: and Xaa-Pro aminopeptidases (EC: TvMP50 Monomeric aminopeptidase P Trichomonas vaginalis M24B subfamily 



This work was supported by UACM and a Grant from CONACYT (83808) Mexico (to M.E.A.S.). J.P.R. was supported by postdoctoral Grant 291113 from CONACYT Mexico. We appreciate the technical assistance of Brenda Herrera Villalobos. We also thank Sonia Rojas for her technical assistance during enzyme crystallization.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Adams PD, Afonine PV, Bunkóczi G, Chen VB, Echols N, Headd JJ, Hung L-W, Jain S, Kapral GJ, Kunstleve RWG (2011) The Phenix software for automated determination of macromolecular structures Methods 55: 94–106CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool J Mol Biol 215: 403–410CrossRefGoogle Scholar
  3. 3.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res 25: 3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Anderson SM, Wawrzak Z, Skarina T, Onopriyenko O, Kwon K, Anderson WF, Savchenko A Structure of a putative aminopeptidase P from Bacillus anthracis Google Scholar
  5. 5.
    Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW (2015) Increasing the structural coverage of tuberculosis drug targets Tuberculosis 95: 142–148CrossRefPubMedGoogle Scholar
  6. 6.
    Bazan J, Weaver L, Roderick S, Huber R., Matthews B (1994) Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold Proc Natl Acad Sci 91: 2473–2477CrossRefPubMedGoogle Scholar
  7. 7.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank Nucleic Acids Res 28: 235–242CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UCM, Besteiro S (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis Science 315: 207–212CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cottrell GS, Hooper NM, Turner AJ (2000) Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese (II)-dependent enzyme. Biochemistry 39: 15121–15128CrossRefPubMedGoogle Scholar
  10. 10.
    Chandonia J-M, Fox NK, Brenner SE (2017) SCOPe: manual curation and artifact removal in the structural classification of proteins–extended database J Mol Biol 429: 348–355CrossRefPubMedGoogle Scholar
  11. 11.
    Drinkwater N, Sivaraman KK, Bamert RS, Rut W, Mohamed K, Vinh NB, Scammells PJ, Drag M, McGowan S (2016) Structure and substrate fingerprint of aminopeptidase P from Plasmodium falciparum Biochem J 473: 3189–3204CrossRefPubMedGoogle Scholar
  12. 12.
    Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot Acta Crystallographica Sect D 66: 486–501CrossRefGoogle Scholar
  13. 13.
    Figueroa-Angulo EE, Rendón-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cárdenas-Guerra RE, Ortega-López J, Quintas-Granados LI, Alvarez-Sánchez ME, Arroyo R (2012) The effects of environmental factors on the virulence of Trichomonas vaginalis Microbes Infect 14: 1411–1427CrossRefPubMedGoogle Scholar
  14. 14.
    Geurts N, Opdenakker G, Van den Steen PE (2012) Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 133: 257–279CrossRefPubMedGoogle Scholar
  15. 15.
    Ghosh M, Grunden AM, Dunn DM, Weiss R, Adams MW (1998) Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180 4781–4789PubMedPubMedCentralGoogle Scholar
  16. 16.
    Gouy M, Guindon S, Gascuel O (2009) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221–224CrossRefPubMedGoogle Scholar
  17. 17.
    Graham SC, Bond CS, Freeman HC, Guss JM (2005) Structural and functional implications of metal ion selection in aminopeptidase P, a metalloprotease with a dinuclear metal center Biochemistry 44: 13820–13836CrossRefPubMedGoogle Scholar
  18. 18.
    Haffner A, Guilavogui AZ, Tischendorf FW, Brattig NW (1998) Onchocerca volvulus: microfilariae secrete elastinolytic and males nonelastinolytic matrix-degrading serine and metalloproteases. Exp Parasitol 90: 26–33CrossRefPubMedGoogle Scholar
  19. 19.
    Hooper NM, Hryszko J, Oppong SY, Turner AJ (1992) Inhibition by converting enzyme inhibitors of pig kidney aminopeptidase P. Hypertension 19: 281–285CrossRefPubMedGoogle Scholar
  20. 20.
    Hooper NM, Keen J, Pappin D, Turner AJ (1987) Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J 247: 85–93CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Iyer S, La-Borde PJ, Payne KA, Parsons MR, Turner AJ, Isaac RE, Acharya KR (2015) Crystal structure of X-prolyl aminopeptidase from Caenorhabditis elegans: a cytosolic enzyme with a di-nuclear active site FEBS Open Bio 5: 292–302CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface Nucleic Acids Res 36: W5–W9CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jones TA, Zou J-Y, Cowan St, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallographica Sect A 47: 110–119CrossRefGoogle Scholar
  24. 24.
    Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement Acta Crystallographica Sect D 66: 125–132CrossRefGoogle Scholar
  25. 25.
    Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state J Mol Biol 372: 774–797CrossRefPubMedGoogle Scholar
  26. 26.
    Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings Chem Rev 102: 4581–4608CrossRefPubMedGoogle Scholar
  27. 27.
    Lowther WT, Orville AM, Madden DT, Lim S, Rich DH, Matthews BW (1999) Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis Biochemistry 38: 7678–7688CrossRefPubMedGoogle Scholar
  28. 28.
    Lloyd GS, Hryszko J, Hooper NM, Turner AJ (1996) Inhibition and metal ion activation of pig kidney aminopeptidase P: dependence on nature of substrate Biochem Pharmacol 52: 229–236CrossRefPubMedGoogle Scholar
  29. 29.
    Maher MJ, Ghosh M, Grunden AM, Menon AL, Adams MW, Freeman HC, Guss JM (2004) Structure of the prolidase from Pyrococcus furiosus. Biochemistry 43: 2771–2783CrossRefPubMedGoogle Scholar
  30. 30.
    Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI (2014) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43: D222–D226CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mueller U, Niesen FH, Roske Y, Goetz F, Behlke J, Buessow K, Heinemann U Crystal structure of human prolidase: the molecular basis of Pd diseaseGoogle Scholar
  32. 32.
    Myara I, Cosson C, Moatti N, Lemonnier A (1994) Human kidney prolidase—purification, preincubation properties and immunological reactivity. Int J Biochem 26: 207–214CrossRefPubMedGoogle Scholar
  33. 33.
    Nagase, H. (2001). Metalloproteases. In: Current Protocols in Protein Science. Wiley, HobokenGoogle Scholar
  34. 34.
    Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 10: e0143304CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Osipiuk J, Maltseva N, Shatsman S, Anderson WF, Joachimiak A (2014) Proline aminopeptidase P II from Yersinia pestis.Google Scholar
  36. 36.
    Overall C, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 94: 941–946CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Puente-Rivera J, Villalpando JL, Villalobos-Osnaya A, Vázquez-Carrillo LI, León-Ávila G, Ponce-Regalado MD, López-Camarillo C, Elizalde-Contreras JM, Ruiz-May E, Arroyo R (2017) The 50 kDa metalloproteinase TvMP50 is a zinc-mediated Trichomonas vaginalis virulence factor. Mol Biochem Parasitol 217: 32–41CrossRefPubMedGoogle Scholar
  38. 38.
    Quintas-Granados LI, Villalpando JL, Vázquez-Carrillo LI, Arroyo R, Mendoza-Hernández G, Álvarez-Sánchez ME (2013) TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol Cell Proteom 12: 1953–1964CrossRefGoogle Scholar
  39. 39.
    Trenholme KR, Brown KL, Skinner-Adams CS, Stack T, Lowther C, To J, Robinson JW, Donnelly MM, Dalton SP, Gardiner JLD (2010) Aminopeptidases of malaria parasites: new targets for chemotherapy. Infect Disord Drug Targets (Formerly Current Drug Targets-Infectious Disorders) 10: 217–225Google Scholar
  40. 40.
    Ragheb D, Bompiani K, Dalal S, Klemba M (2009) Evidence for catalytic roles for Plasmodium falciparum aminopeptidase P in the food vacuole and cytosol. J Biol Chem 284: 24806–24815CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rawlings ND (2009), A large and accurate collection of peptidase cleavages in the MEROPS database. Database 2009.
  42. 42.
    Rawlings ND, Barrett AJ, Finn R (2015) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44: D343–D350CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roderick SL, Matthews BW (1993) Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochemistry 32: 3907–3912CrossRefPubMedGoogle Scholar
  44. 44.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sowmya G, Breen EJ, Ranganathan S (2015) Linking structural features of protein complexes and biological function. Protein Sci 24: 1486–1494CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Stressler T, Eisele T, Schlayer M, Fischer L (2012) Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481. AMB Express 2: 39CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Weaver J, Watts T, Li P, Rye HS (2014) Structural basis of substrate selectivity of E. coli prolidase. PLoS ONE 9: e111531Google Scholar
  48. 48.
    Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A (2011) Overview of the CCP4 suite and current developments. Acta Crystallographica Sect D 67: 235–242CrossRefGoogle Scholar
  49. 49.
    Yang M, Zheng J, Jia H, Song M (2016) Functional characterization of X-prolyl aminopeptidase from Toxoplasma gondii. Parasitology 143: 1443–1449CrossRefPubMedGoogle Scholar
  50. 50.
    Yoshimoto T, Tone H, Honda T, Osatomi R, Kobayashi R, Tsuru D (1989) Sequencing and high expression of aminopeptidase P gene from Escherichia coli HB101. J Biochem 105: 412–416CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang Y, Young-An B, Hong-Ying Z, Yoon K, Guo-Bin C (2016) Functionally expression of metalloproteinase in Taenia solium metacestode and its evaluation for serodiagnosis of cysticercosis. Iran J Parasitol 11: 35PubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhanhua C, Gan JGK (2005) Protein subunit interfaces: heterodimers versus homodimers. Bioinformation 1: 28CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Psychiatric Genetics Department, Clinical Research Branch, National Institute of PsychiatryRamón de la FuenteMexico CityMexico
  2. 2.Posgrado en Ciencias GenómicasUniversidad Autónoma de la Ciudad de México (UACM)Mexico CityMexico
  3. 3.Departamento de Inmunología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations