Soluble Production of Human Recombinant VEGF-A121 by Using SUMO Fusion Technology in Escherichia coli
- 177 Downloads
Abstract
Human recombinant vascular endothelial growth factor-A121 (hrVEGF-A121) has applications in pharmaceutical industry especially in regenerative medicine. Here, we report the expression, purification, and characterization of hrVEGF-A121 in Escherichia coli expression system using human small ubiquitin-related modifier-3 (hSUMO3) fusion partner. Total RNA was isolated from healthy human gingival tissue, VEGF-A121 gene was RT-PCR amplified, and hSUMO3 gene was tagged at N-terminus. The fusion gene (SUMO3-VEGF-A121) was cloned in pET-22b(+) expression vector and transferred into E. coli strains; BL21 codon + and Rosetta-gami B(DE3). The hrVEGF-A121 expression was optimized for temperature, IPTG concentration, and time in Terrific Broth (TB). The positive transformants were sequenced and hrVEGF-A121 nucleotide sequence was submitted to Genbank (Accession No. KT581010). Approximately 40% of total cell protein expression was observed in soluble form on 15% SDS-PAGE. The hSUMO3 was cleaved from hrVEGF-A121 with SUMO protease and purified by Fast Protein Liquid Chromatography using anionic Hi-trap Resource Q column. From 100 ml TB, ~ 25.5% and ~ 6.8 mg of hrVEGF-A121 protein was recovered. The dimerized hrVEGF-A121 was characterized by Native PAGE and Western blot, using human anti-VEGF-A antibody and ESI-MS showed dimeric hrVEGF-A121 at 31,015 Da. The biological activity of hrVEGF-A121 was assessed in vitro by MTT and cell viability assay and observed to be bioactive.
Keywords
HrVEGF-A121 hSUMO3 Rosetta-gami B (DE3) Fast protein liquid chromatography ESI-MS MTTNotes
Author Contributions
All the authors have seen and approved the manuscript and performed their responsibilities in designing the project, experimental work, and manuscript write up.
Compliance with Ethical Standards
Conflict of interest
The authors declare that they have no financial or commercial conflict of interest.
Ethical Approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Supplementary material
References
- 1.Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A. T., & De Bruijn, E. A. (2004). Vascular endothelial growth factor and angiogenesis. Pharmacological Reviews, 56(4), 549–580.CrossRefPubMedGoogle Scholar
- 2.Yazdanfar, M., Bandehpour, M., Yarian, F., Koochaki, A., Parivar, K., & Kazemi, B. (2010). Cloning and expression of human vascular endothelial growth factor gene and inhibition of its expression by antisense in prokaryotic system. Daru, 18(4), 281–285.PubMedPubMedCentralGoogle Scholar
- 3.Brown, A. P., Citrin, D. E., & Camphausen, K. A. (2008). Clinical biomarkers of angiogenesis inhibition. Cancer Metastasis Reviews, 27(3), 415–434.CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., & Nagy, A. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380(6573), 435–439.CrossRefGoogle Scholar
- 5.Wu, H.-P., Feng, G.-S., & Tian, Y. (2005). Hepatic artery infusion of antisense oligodeoxynucleotide and lipiodol mixture transfect liver cancer in rats. World Journal of Gastroenterology, 11(16), 2408–2412.CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Poltorak, Z., Cohen, T., Sivan, R., Kandelis, Y., Spira, G., Vlodavsky, I., Keshet, E., & Neufeld, G. (1997). VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. Journal of Biological Chemistry, 272(11), 7151–7158.CrossRefPubMedGoogle Scholar
- 7.Bao, P., Kodra, A., Tomic-Canic, M., Golinko, M. S., Ehrlich, H. P., & Brem, H. (2009). The role of vascular endothelial growth factor in wound healing. Journal of Surgical Research, 153(2), 347–358.CrossRefPubMedGoogle Scholar
- 8.Choi, H. J., Armaiz Pena, G. N., Pradeep, S., Cho, M. S., Coleman, R. L., & Sood, A. K. (2015). Anti-vascular therapies in ovarian cancer: Moving beyond anti-VEGF approaches. Cancer Metastasis Reviews, 34(1), 19–40.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Danis, R. P., Ciulla, T. A., Criswell, M., & Pratt, L. (2001). Anti-angiogenic therapy of proliferative diabetic retinopathy. Expert Opinion on Pharmacotherapy, 2(3), 395–407.CrossRefPubMedGoogle Scholar
- 10.Taktak-BenAmar, A., Morjen, M., Mabrouk, B., Abdelmaksoud-Dammak, H., Guerfali, R., Fourati-Masmoudi, M., Marrakchi, N., and Gargouri, A. (2017). Expression, purification and functionality of bioactive recombinant human vascular endothelial growth factor VEGF165 in E. coli. AMB Express, 7(1), 33.CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Lee, G. Y., Jung, W. W., Kang, C. S., & Bang, I. S. (2006). Expression and characterization of human vascular endothelial growth factor (VEGF165) in insect cells. Protein Expression and Purification, 46(2), 503–509.CrossRefPubMedGoogle Scholar
- 12.Cohen, T., Gitay-Goren, H., Neufeld, G., & Levi, B.-Z. (1992). High levels of biologically active vascular endothelial growth factor (VEGF) are produced by the baculovirus expression system. Growth Factors, 7(2), 131–138.CrossRefPubMedGoogle Scholar
- 13.Mohanraj, D., Olson, T., & Ramakrishnan, S. (1995). Expression of biologically active human vascular endothelial growth factor in yeast. Growth Factors, 12(1), 17–27.CrossRefPubMedGoogle Scholar
- 14.Lee, S. B., Park, J. S., Lee, S., Park, J., Yu, S., Kim, H., Kim, D., Byun, T. H., Baek, K., Ahn, Y. J., & Yoon, J. (2008). Overproduction of recombinant human VEGF (vascular endothelial growth factor) in Chinese hamster ovary cells. Journal of Microbiology and Biotechnology, 18(1), 183–187.PubMedGoogle Scholar
- 15.Hu, Z. M., Ma, L., Zhou, M. Q., Gao, J. M., & Wang, X. N. (2006). Refolding and purification of recombinant human VEGF-121 expressed as inclusion bodies in Escherichia coli. Nan Fang Yi Ke. Da Xue Xue Bao, 26(8), 1083–1086.Google Scholar
- 16.Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: The novel Fh8 system. Frontiers in Microbiology, 5, 63.PubMedPubMedCentralGoogle Scholar
- 17.Ramos, R., Domingues, L., & Gama, M. (2010). Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum. Protein Expression and Purification, 71(1), 1–7.CrossRefPubMedGoogle Scholar
- 18.Esposito, D., & Chatterjee, D. K. (2006). Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 17(4), 353–358.CrossRefPubMedGoogle Scholar
- 19.Bogachek, M. V., Chen, Y., Kulak, M. V., Woodfield, G. W., Cyr, A. R., Park, J. M., Spanheimer, P. M., Li, Y., Li, T., & Weigel, R. J. (2014). Sumoylation pathway is required to maintain the basal breast cancer subtype. Cancer Cell, 25(6), 748–761.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Morera, Y., Lamdan, H., Bequet, M., Ayala, M., Rojas, G., Munoz, Y., & Gavilondo, J. V. (2006). Biologically active vascular endothelial growth factor as a bacterial recombinant glutathione S-transferase fusion protein. Biotechnology and Applied Biochemistry, 44(1), 45–53.CrossRefPubMedGoogle Scholar
- 21.Kazemi-Lomedasht, F., Behdani, M., Pooshang Bagheri, K., Habibi Anbouhi, M., Abolhassani, M., Khanahmad, H., Shahbazzadeh, D., & Mirzahoseini, H. (2014). Expression and purification of functional human vascular endothelial growth factor-A121; the most important angiogenesis factor. Advanced Pharmaceutical Bulletin, 4(4), 323–328.PubMedPubMedCentralGoogle Scholar
- 22.Shima, D. T., Kuroki, M., Deutsch, U., Ng, Y. S., Adamis, A. P., & D’Amore, P. A. (1996). The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. Journal of Biological Chemistry, 271(7), 3877–3883.CrossRefPubMedGoogle Scholar
- 23.Arcondéguy, T., Lacazette, E., Millevoi, S., Prats, H., & Touriol, C. (2013). VEGF-A mRNA processing, stability and translation: A paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Research, 41(17), 7997–8010.CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Yin, J., Li, G., Ren, X., & Herrler, G. (2007). Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. Journal of Biotechnology, 127(3), 335–347.CrossRefPubMedGoogle Scholar
- 25.Sorensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4(1), 1.CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Grosjean, H., & Fiers, W. (1982). Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene, 18(3), 199–209.CrossRefPubMedGoogle Scholar
- 27.Wang, Z., Li, H., Guan, W., Ling, H., Wang, Z., Mu, T., Shuler, F. D., & Fang, X. (2010). Human SUMO fusion systems enhance protein expression and solubility. Protein Expression and Purification, 73(2), 203–208.CrossRefPubMedGoogle Scholar
- 28.Lee, C. D., Sun, H. C., Hu, S. M., Chiu, C. F., Homhuan, A., Liang, S. M., Leng, C. H., & Wang, T. F. (2008). An improved SUMO fusion protein system for effective production of native proteins. Protein Science, 17(7), 1241–1248.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Johnson, E. S. (2004). Protein modification by SUMO. Annual Review of Biochemistry, 73, 355–382.CrossRefGoogle Scholar
- 30.Li, J. F., Cui, X. W., Ji, H. Y., Qiu, T., Ji, X. M., Du, M. X., Wu, H. T., Xu, X. Z., & Zhang, S. Q. (2011). High efficient expression of bioactive human BMP-14 in E. coli using SUMO fusion partner. The Protein Journal, 30(8), 592–597.CrossRefPubMedGoogle Scholar
- 31.Hanif, M. U., Yaseen, A., Gul, R., Mirza, M. U., Nawaz, M. H., Ahmed, S. S., Aziz, S., Chaudhary, S., Khan, A. A., & Shoaib, M. (2018). Small ubiquitin-like modifier protein 3 enhances the solubilization of human bone morphogenetic protein 2 in E. coli. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-018-2736-0.CrossRefPubMedGoogle Scholar
- 32.Prakash, A., Parsons, S. J., Kyle, S., & McPherson, M. J. (2012). Recombinant production of self-assembling β-structured peptides using SUMO as a fusion partner. Microbial Cell Factories, 11(1), 92.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Jaganaman, S., Pinto, A., Tarasev, M., & Ballou, D. P. (2007). High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli. Protein Expression Purification, 52(2), 273–279.CrossRefPubMedGoogle Scholar
- 34.Bratanov, D., Balandin, T., Round, E., Shevchenko, V., Gushchin, I., Polovinkin, V., Borshchevskiy, V., & Gordeliy, V. (2015). An approach to heterologous expression of membrane proteins. The case of Bacteriorhodopsin. PLoS ONE, 10(6), e0128390.CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Shen, Y., Lao, X. G., Chen, Y., Zhang, H. Z., & Xu, X. X. (2007). High-level expression of Cecropin X in Escherichia coli. International Journal of Molecular Sciences, 8(6), 478–491.CrossRefPubMedCentralGoogle Scholar
- 36.Das, K. M., Banerjee, S., Shekhar, N., Damodaran, K., Nair, R., Somani, S., Raiker, V. P., Jain, S., & Padmanabhan, S. (2011). Cloning, soluble expression and purification of high yield recombinant hGMCSF in Escherichia coli. International Journal of Molecular Sciences, 12(3), 2064–2076.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Durrani, F. G., Gul, R., Sadaf, S., & Akhtar, M. W. (2015). Expression and rapid purification of recombinant biologically active ovine growth hormone with DsbA targeting to Escherichia coli inner membrane. Applied Microbiology and Biotechnology, 99(16), 6791–6801.CrossRefPubMedGoogle Scholar
- 38.Becker, P. B., Gloss, B., Schmid, W., Strahle, U., & Schutz, G. (1986). In vivo protein-DNA interactions in a glucocorticoid response element require the presence of the hormone. Nature, 324(6098), 686–688.CrossRefPubMedGoogle Scholar
- 39.Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., & Butt, T. R. (2006). Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Science, 15(1), 182–189.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Scrofani, S. D., Fabri, L. J., Xu, P., Maccarone, P., & Nash, A. D. (2000). Purification and refolding of vascular endothelial growth factor-B. Protein Science, 9(10), 2018–2025.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Yuan, A., Lin, C. Y., Chou, C. H., Shih, C. M., Chen, C. Y., Cheng, H. W., Chen, Y. F., Chen, J. J., Chen, J. H., Yang, P. C., & Chang, C. (2011). Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE- and SSCE-MRI. PLoS ONE, 6(1), e16062.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Yang, Y., Zhang, S., Howe, K., Wilson, D. B., Moser, F., Irwin, D., & Thannhauser, T. W. (2007). A comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-based protein identification and iTRAQ-based shotgun quantitative proteomics. Journal of Biomolecular Techniques, 18(4), 226–237.PubMedGoogle Scholar
- 43.Shi, X., Chen, G., Xing, H., Weng, D., Bai, X., & Ma, D. (2007). VEGF-C, VEGFR-3, and COX-2 enhances growth and metastasis of human cervical carcinoma cell lines in vitro. Oncology Reports, 18(1), 241–247.PubMedGoogle Scholar