Advertisement

Molecular Biotechnology

, Volume 60, Issue 8, pp 539–549 | Cite as

Application of NanoBiT for Monitoring Dimerization of the Null Hong Kong Variant of α-1-Antitrypsin, NHK, in Living Cells

  • Junpei Norisada
  • Keito Fujimura
  • Fumimasa Amaya
  • Hiroki Kohno
  • Yoko Hirata
  • Kentaro Oh-hashi
Original Paper
  • 123 Downloads

Abstract

In this study, we investigated expression and dimerization of an ER-associated degradation (ERAD) substrate, a null Hong Kong variant of α-1-antitrypsin (NHK) using immunoblotting assay and a novel NanoLuc complementary reporter system called the NanoBiT (NB) assay. This NB-tagged NHK made it possible to monitor the intra- and extracellular status of NHK in living cells. The values for this NB assay fluctuated in response to distinct pharmacological stimuli and co-transfection of several ERAD-related factors. We then focused on mesencephalic astrocyte-derived neurotrophic factor (MANF), an unclarified ATF6/IRE1-downstream target, and established MANF-deficient Neuro2a (N2a) cells using CRISPR/Cas9 system. MANF-deficient N2a significantly elevated OS-9 protein after tunicamycin treatment; however, no specific differences in intra- and extracellular status of NHK protein were observed between wild-type and MANF-deficient cells. Taken together, intrinsic MANF in N2a cells is not strongly associated with the accumulation and clearance of unfolded proteins within the ER under current condition, but this novel NB assay is a useful approach for characterizing the protein status including ERAD substrates.

Keywords

MANF ER stress ERAD NanoBiT UPR 

Notes

Acknowledgements

We thank Dr. Nobuko Hosokawa for the critical reading of this manuscript. We are grateful to Dr. Wei Liu and Dr. Jennifer Lippincott-Schwartz, Dr. Maurizio Molinari, Dr. Nobuko Hosokawa, Dr. Kazuhiro Nagata and Promega Corporation for providing the HA-tagged Sar1 (H79G), OS-9 and NHK genes and NB assay system, respectively. This work is, in part, supported by Research Fellowships for Young Scientists (to J.N.), Grant-in-Aid for Challenging Exploratory Research (No. 17K19901 to K.O.), Grant-in-Aid for Challenging Exploratory Research (No. 26670692, to F.A.), and the OGAWA Science and Technology Foundation (to K.O.).

References

  1. 1.
    Ellgaard, L., & Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nature Reviews Molecular Cell Biology, 4, 181–191.CrossRefGoogle Scholar
  2. 2.
    Vembar, S. S., & Brodsky, J. L. (2008). One step at a time: Endoplasmic reticulum-associated degradation. Nature Reviews Molecular Cell Biology, 9, 944–957.CrossRefGoogle Scholar
  3. 3.
    Schröder, M., & Kaufman, R. J. (2005). ER stress and unfolded protein response. Mutation Research, 569, 29–63.CrossRefGoogle Scholar
  4. 4.
    Harding, H. P., Zhang, Y., & Ron, D. (1997). Protein translation and folding are coupled by an endoplasmic-reticulum resident kinase. Nature, 397, 271–274.CrossRefGoogle Scholar
  5. 5.
    Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., et al. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 415, 92–96.CrossRefGoogle Scholar
  6. 6.
    Zhu, C., Johansen, F. E., & Prywes, R. (1997). Interaction of ATF6 and serum response factor. Molecular and Cellular Biology, 17, 4957–4966.CrossRefGoogle Scholar
  7. 7.
    Haze, K., Yoshida, H., Yanagi, H., Yura, T., & Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular Biology of the Cell, 10, 3787–3799.CrossRefGoogle Scholar
  8. 8.
    Hoseki, J., Ushioda, R., & Nagata, K. (2010). Mechanism and components of endoplasmic reticulum associated degradation. Journal of Biochemistry, 147, 19–25.CrossRefGoogle Scholar
  9. 9.
    Zhog, Y., Shen, H., Wang, Y., Yang, Y., Yang, P., & Fang, S. (2015). Identification of ERAD components essential for dislocation of the null Hong Kong variant of α-1-antitrypsin (NHK). Biochemical and Biophysical Research Communications, 458, 424–428.CrossRefGoogle Scholar
  10. 10.
    Christianson, J. C., Shaler, T. A., Tyler, R. E., & Kopito, R. R. (2008). OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nature Cell Biology, 10, 272–282.CrossRefGoogle Scholar
  11. 11.
    Hosokawa, N., Kamiya, Y., Kamiya, D., Kato, K., & Nagata, K., & Human (2009). OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. Journal of Biological Chemistry, 284, 17061–17068.CrossRefGoogle Scholar
  12. 12.
    Hosokawa, N., Wada, I., Nagasawa, K., Moriyama, T., Okawa, K., & Nagata, K. (2008). Human XTP3-B forms an endoplasmic reticulum quality control scaffold with the HRD1-SEL1L ubiquitin ligase complex and BiP. Journal of Biological Chemistry, 283, 20914–20924.CrossRefGoogle Scholar
  13. 13.
    Kny M, Standera, S., Hartmann-Petesen, R., Kloetzel, P.M., Seeger, M. (2011). Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner. Journal of Biological Chemistry, 286, 5151–5156.CrossRefGoogle Scholar
  14. 14.
    Shridhar, R., Shridhar, V., Rivard, S., Siegfried, J. M., Pietraszkiewicz, H., Ensley, J., et al. (1996). Mutations in the arginine-rich protein gene, in lung, breast, and prostate cancers, and in squamous cell carcinoma of the head and neck. Cancer Research, 56, 5576–5578.Google Scholar
  15. 15.
    Evron, E., Cairns, P., Halachmi, N., Ahrendt, S. A., Reed, A. L., & Sidransky, D. (1997). Normal polymorphism in the incomplete trinucleotide repeat of the arginine-rich protein gene. Cancer Research, 57, 2888–2889.Google Scholar
  16. 16.
    Petrova, P., Raibekas, A., Pevsner, J., Vigo, N., Anafi, M., Moore, M. K., et al. (2003). MANF: A new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. Journal of Molecular Neuroscience, 20, 173–188.CrossRefGoogle Scholar
  17. 17.
    Voutilainen, M. H., Back, S., Porsti, E., Toppinen, L., Lindgren, L., Lindholm, P., et al. (2009). Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. Journal of Neuroscience, 29, 9651–9659.CrossRefGoogle Scholar
  18. 18.
    Apostolou, A., Shen, Y., Liang, Y., Luo, J., & Fang, S. (2008). Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Experimental Cell Research, 314, 2454–2467.CrossRefGoogle Scholar
  19. 19.
    Glembotski, C. C., Thuerauf, D. J., Huang, C., Vekich, J. A., Gottlieb, R. A., & Doroudgar, S. (2012). Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. Journal of Biological Chemistry, 287, 25893–25904.CrossRefGoogle Scholar
  20. 20.
    Yu, Y. Q., Liu, L. C., Wang, F. C., Liang, Y., Cha, D. Q., Zhang, J. J., et al. (2010). Induction profile of MANF/ARMET by cerebral ischemia and its implication for neuron protection. Journal of Cerebral Blood Flow Metabolism, 30, 79–91.CrossRefGoogle Scholar
  21. 21.
    Lindahl, M., Danilova, T., Palm, E., Lindholm, P., Võikar, V., Hakonen, E., et al. (2014). MANF is indispensable for the proliferation and survival of pancreatic β cells. Cell Reports, 7, 366–375.CrossRefGoogle Scholar
  22. 22.
    Lindholm, P., & Saarma, M. (2010). Novel CDNF/MANF family of neurotrophic factors. Devlopmental Neurobiology, 70, 360–371.Google Scholar
  23. 23.
    Lee, A. H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology, 23, 7448–7459.CrossRefGoogle Scholar
  24. 24.
    Mizobuchi, N., Hoseki, J., Kubota, H., Toyokuni, S., Nozaki, J., Naitoh, M., et al. (2007). ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Structure and Function, 32, 41–50.CrossRefGoogle Scholar
  25. 25.
    Oh-hashi, K., Hirata, Y., & Kiuchi, K. (2013). Transcriptional regulation of mouse mesencephalic astrocyte-derived neurotrophic factor in Neuro2a cells. Cellular & Molecular Biology Letters, 18, 398–415.Google Scholar
  26. 26.
    Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., & Nagata, K. (2001). A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Reports, 2, 415–422.CrossRefGoogle Scholar
  27. 27.
    Ushioda, R., Hoseki, J., Araki, K., Jansen, G., Thomas, D. Y., & Nagata, K. (2008). ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science, 321, 569–572.CrossRefGoogle Scholar
  28. 28.
    Aridor, M., Fish, K. N., Bannykh, S., Weissman, J., Roberts, T. H., Lippincott-Schwartz, J., et al. (2001). The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. Journal Cell Biology, 152, 213–229.CrossRefGoogle Scholar
  29. 29.
    Bernasconi, R., Petel, T., Luban, J., & Molinari, M. (2008). A dual task for the Xbp1-responsive OS-9 variants in the mammalian endoplasmic reticulum. Journal of Biological Chemistry, 283, 16446–16454.CrossRefGoogle Scholar
  30. 30.
    Sai, X., Kokame, K., Shiraishi, H., Kawamura, Y., Miyata, T., Yanagisawa, K., et al. (2003). The ubiquitin-like domain of Herp is involved in Herp degradation, but not necessary for its enhancement of amyloid L-protein generation. FEBS Letters, 553, 151–156.CrossRefGoogle Scholar
  31. 31.
    Esvelt, K. M., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science, 339, 823–826.CrossRefGoogle Scholar
  32. 32.
    Andrew, S. D., Marie, K. S., Mary, P. H., Kris, Z., Paul, O., Thomas, H. L., et al. (2016). NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chemical Biology, 11, 400–408.CrossRefGoogle Scholar
  33. 33.
    Oh-hashi, K., Hirata, Y., & Kiuchi, K. (2016). SOD1 dimerization monitoring using a novel split NanoLuc, NanoBit. Cell Biochemistry Function, 34, 497–504.CrossRefGoogle Scholar
  34. 34.
    Hosokawa, N., Tremblay, L. O., You, Z., Herscovics, A., Wada, I., & Nagata, K. (2003). Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. Journal of Biological Chemistry, 278, 26287–26294.CrossRefGoogle Scholar
  35. 35.
    Norisada, J., Hirata, Y., Amaya, F., Kiuchi, K., & Oh-hashi, K. (2016). A comparative analysis of the molecular features of MANF and CDNF. PLoS ONE, 11, e0146923.CrossRefGoogle Scholar
  36. 36.
    Schwinn, M. K., Machleidt, T., Zimmerman, K., Eggers, C. T., Dixon, A. S., Hurst, R., et al. (2018). CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chemical Biology, 13, 467–474.CrossRefGoogle Scholar
  37. 37.
    Oh-hashi, K., Sugiura, N., Amaya, F., Isobe, K. I., & Hirata, Y. (2018). Functional validation of ATF4 and GADD34 in Neuro2a cells by CRISPR/Cas9-mediated genome editing. Molecular and Cellular Biochemistry, 440, 65–75.CrossRefGoogle Scholar
  38. 38.
    Okuda-Shimizu, Y., & Hendershot, L. M. (2007). Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. Molecular Cell, 28, 544–554.CrossRefGoogle Scholar
  39. 39.
    Zhong, X., Shen, Y., Ballar, P., Apostolou, A., Agami, R., & Fang, S. (2004). AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. Journal of Biological Chemistry, 279, 45676–45684.CrossRefGoogle Scholar
  40. 40.
    Fu, L., & Sztul, E. (2003). Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator. Journal of Cell Biology, 160, 157–163.CrossRefGoogle Scholar
  41. 41.
    Hosokawa, N., Wada, I., Natsuka, Y., & Nagata, K. (2006). EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1-antitrypsin. Genes Cell, 11, 465–476.CrossRefGoogle Scholar
  42. 42.
    Christianson, J. C., Olzmann, J. A., Shaler, T. A., Sowa, M. E., Bennett, E. J., Richter, C. M., et al. (2012). Defining human ERAD networks through an integrative mapping strategy. Nature Cell Biology, 14, 93–105.CrossRefGoogle Scholar
  43. 43.
    Horimoto, S., Ninagawa, S., Okada, T., Koba, H., Sugimoto, T., Kamiya, Y., Kato, K., Takeda, S., & Mori, K. (2013). The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L protein. Journal of Biological Chemistry, 288, 31517–31527.CrossRefGoogle Scholar
  44. 44.
    Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., & Mori, K. (2003). A time-dependent phase shift in the mammalian unfolded protein response. Developmental Cell, 4, 265–271.CrossRefGoogle Scholar
  45. 45.
    Okada, T., Yoshida, H., Akazawa, R., Negishi, M., & Mori, K. (2002). Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochemical Journal, 366, 585–594.CrossRefGoogle Scholar
  46. 46.
    Sugimoto, T., Ninagawa, S., Yamano, S., Ishikawa, T., Okada, T., Takeda, S., et al. (2017). SEL1L-dependent substrates require derlin2/3 and herp1/2 for endoplasmic reticulum-associated degradation. Cell Structure and Function, 42, 81–94.CrossRefGoogle Scholar
  47. 47.
    Sun, S., Shi, G., Sha, H., Ji, Y., Han, X., Shu, X., et al. (2015). IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation. Nature Cell Biology, 17, 1546–1555.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Junpei Norisada
    • 1
  • Keito Fujimura
    • 2
  • Fumimasa Amaya
    • 3
  • Hiroki Kohno
    • 2
  • Yoko Hirata
    • 1
    • 2
  • Kentaro Oh-hashi
    • 1
    • 2
  1. 1.United Graduate School of Drug Discovery and Medical Information SciencesGifu UniversityGifuJapan
  2. 2.Department of Chemistry and Biomolecular Science, Faculty of EngineeringGifu UniversityGifuJapan
  3. 3.Department of AnesthesiologyKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations