Advertisement

Molecular Biotechnology

, Volume 60, Issue 8, pp 608–620 | Cite as

Synthetic Promoters: Designing the cis Regulatory Modules for Controlled Gene Expression

  • Jameel Aysha
  • Muhammad Noman
  • Fawei Wang
  • Weican Liu
  • Yonggang Zhou
  • Haiyan Li
  • Xiaowei Li
Review

Abstract

Designing the expression cassettes with desired properties remains the most important consideration of gene engineering technology. One of the challenges for predictive gene expression is the modeling of synthetic gene switches to regulate one or more target genes which would directly respond to specific chemical, environmental, and physiological stimuli. Assessment of natural promoter, high-throughput sequencing, and modern biotech inventory aided in deciphering the structure of cis elements and molding the native cis elements into desired synthetic promoter. Synthetic promoters which are molded by rearrangement of cis motifs can greatly benefit plant biotechnology applications. This review gives a glimpse of the manual in vivo gene regulation through synthetic promoters. It summarizes the integrative design strategy of synthetic promoters and enumerates five approaches for constructing synthetic promoters. Insights into the pattern of cis regulatory elements in the pursuit of desirable “gene switches” to date has also been reevaluated. Joint strategies of bioinformatics modeling and randomized biochemical synthesis are addressed in an effort to construct synthetic promoters for intricate gene regulation.

Keywords

cis motifs Synthetic promoter Gene regulation In silico approaches Bioinformatics 

Abbreviations

CaMV

Cauliflower mosaic virus

GUS

β-Glucuronidase

TF

Transcription factor

ABA

Abscisic acid

DBD

DNA binding domain

UAR

Upstream activating region

PBZ

Probenazole

LRE

Light responsive elements

TSS

Transcription start site

PG

Poly galacturonase

Notes

Acknowledgements

This research was supported by the Special Program for Research of Transgenic Plants (2016ZX08010-002), the National Natural Science Foundation of China (31601323, 31501366, 31401403), the Key Scientific and the Natural Science Foundation of Science Technology Department of Jilin Province (20170101015JC), Technological Project of Science Technology Department of Jilin Province (20150204027NY).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhou, J., Yang, Y., Wang, X., Yu, F., Yu, C., Chen, J., Chen, J., Cheng, Y., & Yan, C. (2013). Enhanced transgene expression in rice following selection controlled by weak promoters. BMC Biotechnology, 13, 29.  https://doi.org/10.1186/1472-6750-13-29.CrossRefGoogle Scholar
  2. 2.
    Potenza, C., Aleman, L., & Gopalan, C. S. (2004). Targeting transgene expression in research, agricultural and environmental applications: promoters used in plant transformation. In Vitro Cellular and Developmental Biology Plant, 40, 1–22.  https://doi.org/10.1079/IVP2003477.CrossRefGoogle Scholar
  3. 3.
    Mogno, I., Vallania, F., Mitra, R. D., & Cohen, B. A. (2010). TATA is a modular component of synthetic promoters. Genome Research, 20, 1391–1397.  https://doi.org/10.1101/gr.106732.110.CrossRefGoogle Scholar
  4. 4.
    Bhullar, S., Chakravarthy, S., Advani, S., Datta, S., Pental, D., & Burma, P. K. (2003). Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis elements in a novel DNA context versus domain swapping. Plant Physiology, 132, 988–998.  https://doi.org/10.1104/pp.103.020602.CrossRefGoogle Scholar
  5. 5.
    Moshelion, M., & Altman, A. (2015). Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnology, 33 (6), 337–342.  https://doi.org/10.1016/j.tibtech.2015.03.001.CrossRefGoogle Scholar
  6. 6.
    Mehrotra, R., Gupta, G., & Sethi, R. (2011). Designer promoter: an artwork of cis engineering. Plant Molecular Biology, l75, 527–536.  https://doi.org/10.1007/s11103-011-9755-3.CrossRefGoogle Scholar
  7. 7.
    Venter, M. (2007). Synthetic promoters: genetic control through cis engineering. Trends Plant Science, 12, 118–124.  https://doi.org/10.1016/j.tplants.2007.01.002.CrossRefGoogle Scholar
  8. 8.
    Hammer, K., Mijakovic, I., & Jensen, P. R. (2006). Synthetic promoter libraries-tuning of gene expression. Trends Biotechnology, 24, 53–55.  https://doi.org/10.1016/j.tibtech.2005.12.003.CrossRefGoogle Scholar
  9. 9.
    Gurr, S. J., & Rushton, P. J. (2005). Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnology, 23, 283–290.CrossRefGoogle Scholar
  10. 10.
    Komarnytsky, S., & Borisjuk, N. (2003). Functional analysis of promoter elements in plants. Genetic Engineering, 25, 113–141.Google Scholar
  11. 11.
    Porto, M. S., Pinheiro, M. P. N., Batista, V. G. L., dos Santos, R. C., Filho, P.D.A.M., & De Lima, L. M. (2014). Plant promoters: an approach of structure and function. Mol Biotechnology, 56, 38–49.  https://doi.org/10.1007/s12033-013-9713-1.CrossRefGoogle Scholar
  12. 12.
    Kumari, S., & Ware, D. (2013). Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS ONE, 8(10), e79011.  https://doi.org/10.1371/journal.pone.0079011.CrossRefGoogle Scholar
  13. 13.
    Kumar, S., AlAbed, D., Whitteck, J. T., & Chen, W., et al. (2015). A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. Plant Molecular Biology, 87, 341–353.  https://doi.org/10.1007/s11103-015-0281-6.CrossRefGoogle Scholar
  14. 14.
    Logemann, E., Birkenbihl, R. P., Rawat, V., Schneeberger, K., Schmelzer, E. & Somssich, I.E. (2013). Functional dissection of the PROPEP2 and PROPEP3 promoters reveals the importance of WRKY factors in mediating microbe-associated molecular pattern-induced expression. New Phytology, 198, 1165–1177.  https://doi.org/10.1111/nph.12233.CrossRefGoogle Scholar
  15. 15.
    Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis acting regulatory DNA elements (PLACE) database. Nucleic Acids Research, 27, 297–300.  https://doi.org/10.1093/nar/27.1.297.CrossRefGoogle Scholar
  16. 16.
    Matys, V., Fricke, E., Geffers, R., Gössling, E., Haubrock, M., & Hehl, R. (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Research, 31, 374–378.  https://doi.org/10.1093/nar/gkg1081.CrossRefGoogle Scholar
  17. 17.
    Lescot, M., Déhais, P., Moreau, Y., De Moor, B., Rouzé, P., & Rombauts, S. (2002). PlantCARE: a database of plant cis acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.  https://doi.org/10.1186/1471-2164-9-561.CrossRefGoogle Scholar
  18. 18.
    Biłas, R., Szafran, K., Hnatuszko-Konka, K., & Kononowicz, A.K. (2016). Plant Cell Tissue and Organ Culture, 127, 269–287.  https://doi.org/10.1007/s11240-016-1057-7.CrossRefGoogle Scholar
  19. 19.
    Mehrotra, R., & Mehrotra, S. (2010). Promoter activation by ACGT in response to salicylic and abscisic acids is differentially regulated by the spacing between two copies of the motif. J Plant Physiology, 167, 1214–1218.CrossRefGoogle Scholar
  20. 20.
    Acharya, S., Ranjan, R., Pattanaik, S., Maiti, I.B., Dey, N. (2014). Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Planta, 239, 381–396.  https://doi.org/10.1007/s00425-013-1973-2.CrossRefGoogle Scholar
  21. 21.
    Kumar, D., Patro, S., Ghosh, J., Das, A., Maiti, I.B., & Dey, N. (2012). Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root and leaf-activity using TGACG motif rearrangement. Gene, 503, 36–47.  https://doi.org/10.1016/j.gene.2012.04.053.CrossRefGoogle Scholar
  22. 22.
    Munteanu, B., Braun, M., & Boonrod, K. (2012). Improvement of PCR reaction conditions for site-directed mutagenesis of big plasmids. Journal of Zhejiang University Science. B, 13(4), 244–247.  https://doi.org/10.1631/jzus.B1100180.CrossRefGoogle Scholar
  23. 23.
    Cormack, B. (1994). Introduction of a point mutation by sequential PCR steps. Current Protocol Molecular Biology, 2, 857–859.Google Scholar
  24. 24.
    Ranjan, R., & Dey, N. (2012). Development of vascular tissue and stress inducible hybrid-synthetic promoters through dof-1 motifs rearrangement. Cell Biochemistry and Biophysics, 63, 235–245.  https://doi.org/10.1007/s12013-012-9359-9.CrossRefGoogle Scholar
  25. 25.
    Kuluev, B., Knyazev, A., Lebedev, Y., Iljassowa, A., Chemeris, A., & Russian (2010). Construction of hybrid promoters of caulimo viruses and analysis of their activity in transgenic plants. Journal of Plant Physiology, 57, 4582.Google Scholar
  26. 26.
    Kagami, O., Kikuch, M., Harayama, S., (2004). Single-stranded DNA family shuffling. Methods in Enzymology, 388, 11–21.CrossRefGoogle Scholar
  27. 27.
    Cirino, P.C., Mayer, K.M., & Umeno, D. (2003). Generating mutant libraries using error-prone PCR. In: F. H. Arnold & G. Georgiou (Eds.) Directed evolution library creation. Methods in molecular biology™, 231. New York: Humana Press.Google Scholar
  28. 28.
    Guerva-Garcia, A., Lo´pez-Bucio, J., & Herrera-Estrella., L. (1999). The mannopine synthase promoter contains vectorial cis regulatory elements that act as enhancers and silencers. Molecular and General Genetics, 262, 608–617.CrossRefGoogle Scholar
  29. 29.
    Kourmpetli, S., Lee, K., Hemsley, R., Rossignol, P., Papageorgiou, T., & Drea, S. (2013). Bidirectional promoters in seed development and related hormone/stress responses. BMC Plant Biology, 13, 187.CrossRefGoogle Scholar
  30. 30.
    Bhullar, S., Datta, S., Advani, S., Chakravarthy, S., Gautam, T., Pental, D., & Burma, P.K. (2007). Functional analysis of cauliflower mosaic virus 35S promoter: re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity. Plant Biotechnology Journal, 5, 696–708.  https://doi.org/10.1111/j.1467-7652.2007.00274.x.CrossRefGoogle Scholar
  31. 31.
    Hahn, S., & Young, E. T. (2011). Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics, 189(3), 705–736.  https://doi.org/10.1534/genetics.111.127019.CrossRefGoogle Scholar
  32. 32.
    Gustin, K., & Burk, R. D. (2000). PCR-directed linker scanning mutagenesis. In: M. J. Tymms (eds) Transcription factor protocols. Methods in molecular biology™, 130, 85–90.Google Scholar
  33. 33.
    Liu, W., Mazarei, M., Rudis, M.R., Fethe, M.H., & Stewart, C.N. (2011) Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnol, pp. 11–108.Google Scholar
  34. 34.
    Gertz, J., Siggia, E.D., & Cohen, B.A. (2009). Analysis of combinatorial cis regulation in synthetic and genomic promoters. Nature, 457, 215–218.  https://doi.org/10.1038/nature07521.CrossRefGoogle Scholar
  35. 35.
    Silva, J.M., Li, M.Z., Chang, K., Ge, W., Goldin, M.C., & Rickles, R.J. (2005). Second-generation shRNA libraries covering the 447 mouse and human genomes. Nature Genetics, 37, 1281–1288.  https://doi.org/10.1038/ng1650.CrossRefGoogle Scholar
  36. 36.
    Mukherjee, S., Berger, M.F., Jona, G., Wang, X.S., Muzzey, D., Snyder, M., Young, R.A., & Bulyk, M. L. (2004). Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nature Genetics, 36, 1331–1339.CrossRefGoogle Scholar
  37. 37.
    Hernandez-Garcia, C.M., & Finer, J.J. (2014). Identification and validation of promoters and cis acting regulatory elements. Plant Science.  https://doi.org/10.1016/j.plantsci.2013.12.007.Google Scholar
  38. 38.
    Rombauts, S., Florquin, K., Lescot, M., Marchal, K., Rouzé, P., & Van de Peer, Y. (2003). Computational approaches to identify promoters and cis regulatory elements in plant genomes. Plant Physiology, 132(3), 1162–1176.  https://doi.org/10.1104/pp.102.017715.CrossRefGoogle Scholar
  39. 39.
    Wang, L., Li, Q., Cheng, H., Zhang, M., Li, N., H (2014). 5′-cap selection methods and their application in full-length cD. Journal of Shanghai Jiaotong University, 19(5), 580–586.CrossRefGoogle Scholar
  40. 40.
    Venter, M., & Botha, F. C. (2010). Synthetic promoter engineering. In: E.C. Pua & M.R. Davey (Eds.), Plant developmental biology–biotechnological perspectives (pp. 393–414). Berlin: Springer.CrossRefGoogle Scholar
  41. 41.
    Pilpel, Y., Sudarsanam, P., & Church, G. M. (2001). Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 29, 153–159.CrossRefGoogle Scholar
  42. 42.
    Van Helden, J. (2003). Regulatory sequence analysis tools. Nucleic Acids Research, 31, 3593–3596.  https://doi.org/10.1093/nar/gkv362.CrossRefGoogle Scholar
  43. 43.
    Hasan, R., & Uddin, J. (2014). Mining techniques for informative motif discovery. International Journal of Computer Applications, 88(12), 21–24.CrossRefGoogle Scholar
  44. 44.
    Bailey, L.T., Bodén, M., Whitington, T., & Machanick, P. (2010). The value of position-specific priors in motif discovery using MEME. BMC Bioinformatics, 11, 179.  https://doi.org/10.1186/1471-2105.CrossRefGoogle Scholar
  45. 45.
    Dey, N., Sarkar, S., Acharya, S., & Maiti, I.B. (2015). Synthetic promoters in planta. Planta, 242, 1077.CrossRefGoogle Scholar
  46. 46.
    Jegga, A., Gupta, G.A., Gowrisankar, S., Deshmukh, M.A., Connolly, S., & Finley, K., et al. (2005). CisMols analyzer: identification of compositionally similar cis element clusters in ortholog conserved regions of coordinately expressed genes. Nucleic Acids Research, 33, 408–411.CrossRefGoogle Scholar
  47. 47.
    Sharov, A.A., Dudekula, D.B., & Ko, M.S.H. (2006). CisView: a browser and database of cis regulatory modules predicted in the mouse genome. DNA Research, 13(3), 123–134.  https://doi.org/10.1093/dnares/dsl005.CrossRefGoogle Scholar
  48. 48.
    Karanam, S., & Moreno, C.S. (2004). CONFAC: automated application of comparative genomic promoter analysis to DNA microarray datasets. Nucleic Acids Research, 32, 475–484.  https://doi.org/10.1093/nar/gkh353.CrossRefGoogle Scholar
  49. 49.
    Zhang, M. Q. (1998). A discrimination study of human core-promoters’ in Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 3, 240–251.Google Scholar
  50. 50.
    Zhang, M. Q. (1998). Statistical features of human exons and their flanking regions. Human Molecular Genetics, 7, 919–932.  https://doi.org/10.1093/hmg/7.5.919.CrossRefGoogle Scholar
  51. 51.
    Suzuki, Y., Yamashita, R., Nakai, K., & Sugano, S. (2002). DBTSS: DataBase of human transcriptional start sites and full-length cDNAs. Nucleic Acids Research, 30(1), 328–331.  https://doi.org/10.1093/nar/30.1.328.CrossRefGoogle Scholar
  52. 52.
    Jagannathan, V., Roulet, E., Delorenzi, M., & Bucher, P. (2006). HTPSELEX-a database of high-throughput SELEX libraries for TFBSs. Nucleic Acids Research, 34, 90–94.  https://doi.org/10.1093/nar/gkj049.CrossRefGoogle Scholar
  53. 53.
    Sandelin, A., Alkema, W., Engström, P., Wasserman, W.W., & Lenhard, B. (2004). JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Research, 32, 91–94.CrossRefGoogle Scholar
  54. 54.
    Ohler, U., Harbeck, S., & Niemann, H. (1999). Interpolated Markov chains for eukaryotic promoter recognition. Bioinformatics, 15, 362–369.CrossRefGoogle Scholar
  55. 55.
    Pesole, G., Liuni, S., Grillo, G., Licciulli, F., Mignone, F., Gissi, C., & Saccone, C. (2002). UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3 untranslated regions of eukaryotic mRNAs. Update (2002). Nucleic Acids Research, 30, 335–340.  https://doi.org/10.1093/nar/28.1.193.CrossRefGoogle Scholar
  56. 56.
    Higo, K., Ugawa, Y., Iwamoto, M., & Korenaga, T. (1999). Plant cis acting regulatory DNA elements (PLACE) database. Nucleic Acids Research, 27, 297–300.CrossRefGoogle Scholar
  57. 57.
    Lardenois, A., Chalmel, F., Bianchetti, L., Sahel, J.A., Léveillard, T., & Poch, O. (2006). PromAn: an integrated knowledge-based web server dedicated to promoter analysis. Nucleic Acids Research, 34, 578–583.  https://doi.org/10.1093/nar/gkl193.CrossRefGoogle Scholar
  58. 58.
    Roth, F.P., Hughes, J.D., Estep, P.W., & Church, G.M. (1998). Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology, 16, 939–945.CrossRefGoogle Scholar
  59. 59.
    Ghosh, D. (2000). Object-oriented transcription factor database (ooTFD). Nucleic Acids Research, 28(1), 308–310.CrossRefGoogle Scholar
  60. 60.
    Jegga, A.G., Sherwood, S.P., Carman, J.W., Pinski, A.T., Phillips, J.L., Pestian, J.P., & Aronow, B. J. (2002). Detection and visualization of compositionally similar cis regulator element clusters in orthologous and coordinately controlled genes. Genome Research, 12, 1408–1417.CrossRefGoogle Scholar
  61. 61.
    Kolchanov, N. A., Podkolodnaya, O. A., Ananko, E. A., Ignatieva, E. V., Stepanenko, I. L., Kel-Margoulis, O. V., et al. (2000). Transcription regulatory regions database (TRRD): Its status in 2000. Nucleic Acids Research, 28, 298–301.CrossRefGoogle Scholar
  62. 62.
    Hou, L. C. L., Wang, J., Xu, D., Dai, L., Zhang, H., & Zhao, Y. (2012). Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant Molecular Biology Reports, 30, 1496–1506.CrossRefGoogle Scholar
  63. 63.
    Liu, W., Mazarei, M., Rudis, M.R., Fethe, M.H., & Stewart, C.N. (2013). Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants. Journal of BMC Biotechnology, 11, 43–52.  https://doi.org/10.1186/1472-6750-11-108.Google Scholar
  64. 64.
    Rushton, P.J., Reinstadler, A., Lipka, V., Lippok, B., & Somssich, I.E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant Cell, 14, 749–762.  https://doi.org/10.1105/tpc.01041.CrossRefGoogle Scholar
  65. 65.
    Heise, A., Lippok, B., Kirsch, C., & Hahlbrock, K. (2002). Two immediate early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor response element of AtCMPG1. Proc Natl Acad Sci, 99, 9049–9054.  https://doi.org/10.1073/pnas.132277699.CrossRefGoogle Scholar
  66. 66.
    Kovalchuk, N., Smith, J., Pallotta, M., Singh, R., Ismagul, A., Eliby, S., Bazanova, N., Milligan, A. S., Hrmova, M., Langridge, P., & Lopato, S. (2009). Defensing promoters as potential tools for engineering disease resistance in cereal grains. Plant Biotechnology Journal, 8, 47–64.  https://doi.org/10.1111/j.1467-7652.2009.00465.x.CrossRefGoogle Scholar
  67. 67.
    Matton, D. P., Prescott, G., Bertrand, C., Camirand, A., & Brisson, N. (1993). Identification of cis acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato. Plant Molecular Biology, 22, 279–291.  https://doi.org/10.1007/BF00014935.CrossRefGoogle Scholar
  68. 68.
    Skriver, K., Olsen, F. L., Rogers, J. C., & Mundy, J. (1991). cis acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proceedings of National Academy of Science USA, 88, 7266–7270.  https://doi.org/10.1073/pnas.88.16.7266.CrossRefGoogle Scholar
  69. 69.
    Peleg, Z., & Blumwald, E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Current Opinion Plant Biology, 14(3), 290–295.CrossRefGoogle Scholar
  70. 70.
    Smith., H. (2000). Phytochromes and light signal perception by plants an emerging synthesis. Nature, 407, 585–591.  https://doi.org/10.1038/35036500.CrossRefGoogle Scholar
  71. 71.
    Kuno, N., & Furuya, M. (2000). Phytochrome regulation of nuclear gene expression in plants. Seminar Cell Development Biology, 11, 485–493.  https://doi.org/10.1006/scdb.2000.0205.CrossRefGoogle Scholar
  72. 72.
    Moore, I., Samalova, M., & Kurup, S. (2006). Trans activated and chemically inducible gene expression in plants. Plant J Cell Molecular Biology, 45, 651–683.  https://doi.org/10.1111/j.1365-313X.2006.02660.x.CrossRefGoogle Scholar
  73. 73.
    Zuo, J., & Chua, N.H. (2001). Chemical-inducible systems for regulated expression of plant genes. Current Opinion Biotechnology, 1, 146–151.  https://doi.org/10.1016/S0958-1669(00)00073-2.Google Scholar
  74. 74.
    Bang, S.W., Park., S.H., Jeong, J.S., Kim, Y.S., Jung, H., Ha, S.H., & Kim, J.K., et al. (2013). Characterization of the stress-inducible OsNCED3 promoter in different transgenic rice organs and over three homozygous generations. Planta, 237, 211–224.  https://doi.org/10.1007/s00425-012-1764-1.CrossRefGoogle Scholar
  75. 75.
    Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R. M., Almeraya, R., Yamaguchi-Shinozaki, K., & Hoisington, D. (2004). Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 47, 493–500.  https://doi.org/10.1139/g03-140.CrossRefGoogle Scholar
  76. 76.
    Sawant, S., Singh, P.K., Madanala, R., & Tuli, R. (2001). Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theoretical and Applied Genetics, 102, 635–644.CrossRefGoogle Scholar
  77. 77.
    Sleight, S.C., Bartley, B.A., Lieviant, J.A., & Sauro, H.M. (2010). Designing and engineering evolutionary robust genetic circuits. Journal of Biology Engineering.  https://doi.org/10.1186/1754-1611-4-12.Google Scholar
  78. 78.
    Sawant, S.V., Kiran, K., Mehrotra, R., Chaturvedi, C.P., Ansari, S.A., Singh, P., Lodhi, N., & Tuli, R. (2005). A variety of synergistic and antagonistic interactions mediated by cis acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. Journal of Experimental Botany, 56, 2345–2353.CrossRefGoogle Scholar
  79. 79.
    Petolino, J.F., & Davies, J.P. (2013). Designed transcriptional regulators for trait development. Plant Science..  https://doi.org/10.1016/j.plantsci.2012.12.006.Google Scholar
  80. 80.
    Dreier, B., Beerli, R.R., Segal, D.J., Flippin, J.D., & Barbas, C.F. (2001). Development of zinc finger domains for recognition of the 5 ‘-ANN-3 ’ family of DNA sequences and their use in the construction of artificial transcription factors. Journal of Biology Chemistry, 276, 29466–29478.  https://doi.org/10.1074/jbc.M506654200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical DevelopmentJilin Agricultural UniversityChangchunPeople’s Republic of China

Personalised recommendations