Construction and Characterization of a Medium Copy Number Expression Vector Carrying Auto-Inducible dps Promoter to Overproduce a Bacterial Superoxide Dismutase in Escherichia coli

  • Debbie Soefie RetnoningrumEmail author
  • I. Wayan Martadi Santika
  • Suryanata Kesuma
  • Syahdu Ayu Ekowati
  • Catur Riani
original paper


Medium copy number expression vector and auto-inducible promoter could be a solution for producing recombinant therapeutic proteins in industrial scale regarding plasmid stability, cost, and product quality. This work aimed to construct a medium copy number pBR322-based expression vector carrying auto-inducible promoter, determine its ability to express heterologous gene, and study its segregational stability. Three stationary-phase promoters of Escherichia coli genes (gadA, dps and sbmC) were used to produce a superoxide dismutase from Staphylococcus equorum (rMnSODSeq) coding region from pBR322Δtet (pBR322-mini). Four plasmids were constructed with different promoters, i.e., T7 (pBMsod), gadA (pMCDsod), dps (pCADsod), and sbmC (pCDSsod) using pBR322-mini as backbone. Results showed that rMnSODSeq expression from pBMsod was significantly higher than that from pJExpress414sod (high copy number plasmid). Meanwhile, rMnSODSeq from pCADsod (auto-inducible promoter) was as high as from pBMsod (IPTG-inducible T7 promoter). rMnSODSeq expressed from pCADsod when bacterial cells entered stationary phase appeared as an active protein band of 23.5 kDa when analyzed by zymography and SDS-PAGE. pCADsod displayed the highest stability compared with pBMsod and pJEXpress414sod by plasmid retention assay. We demonstrate the use of an auto-inducible dps promoter to express high level of heterologous protein, an SOD of S. equorum, from a stable expression vector with medium copy number.


Auto-inducible promoter Dps promoter Medium copy number Gene expression Plasmid construction rMnSODSeq 



This work was financially funded by Hibah Kompetensi, DIKTI.

Supplementary material

12033_2018_151_MOESM1_ESM.docx (392 kb)
Supplementary material 1 (DOCX 391 KB)


  1. 1.
    Lagassé, H. A. D., Alexaki, A., Simhadri, V. L., Katagiri, N. H., Jankowski, W., Sauna, Z. E., & Kimchi-Sarfaty, C. (2017) Recent advances in (therapeutic protein) drug development. F1000Res. Scholar
  2. 2.
    Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 1–17.Google Scholar
  3. 3.
    Baeshen, M. N., Bouback, T. A. F., Alzubaidi, M. A., Bora, R. S., Alotaibi, M. A. T., Alabbas, O. T. O., Alshahrani, S. M., Aljohani, A. A. M., Munshi, R. A. A., Al-Hejin, A., Ahmed, M. M. M., Redwan, E. M., Ramadan, H. A. I., Saini, K. S., & Baeshen, N. A. (2016). Expression and purification of C-peptide containing insulin using Pichia pastoris expression system. BioMed Research International, 2016, 1–7.CrossRefGoogle Scholar
  4. 4.
    Sanchez-Garcia, L., Martín, L., Mangues, R., Ferrrer-Miralles, N., Vázquez, E., & Villaverde, A. (2016). Recombinant pharmaceuticals from microbial cells: A 2015 update. Microbial Cell Factories, 15, 1–7.CrossRefGoogle Scholar
  5. 5.
    Huang, C. J., Lin, H., & Yang, X. (2012). Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of Industrial Microbiology and Biotechnology, 39, 383–399.CrossRefGoogle Scholar
  6. 6.
    Friehs, K. (2004). Plasmid copy number and plasmid stability. Advances in Biochemical Engineering/Biotechnology, 86, 47–82.CrossRefGoogle Scholar
  7. 7.
    Briand, L., Marcion, G., Kriznik, A., Heydel, J. M., Artur, Y., Garrido, C., Seigneuric, R., & Neiers, F. (2016). A self-inducible heterologous protein expression system in Escherichia coli. Scientific Reports, 6, 1–11.CrossRefGoogle Scholar
  8. 8.
    Jaishankar, J., & Srivastava, P. (2017). Molecular basis of stationary phase survival and applications. Frontiers in Microbiology, 8, 1–12.CrossRefGoogle Scholar
  9. 9.
    Ben, R., Jiying, F., Jian’an, S., Tu, T. N., Jing, S., Jingsong, Z., & Qiuyi, Yaling, S. (2016) An auto-inducible expression system based on the RhlI-RhlR quorum-sensing regulon for recombinant protein production in E. coli. Biotechnology and Bioprocess Engineering, 21, 160–168.CrossRefGoogle Scholar
  10. 10.
    Castanié-Cornet, M. P., Cam, K., Bastiat, B., Cros, A., Bordes, P., & Gutierrez, C. (2010). Acid stress response in Escherichia coli: Mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acid Research, 38, 3546–3554.CrossRefGoogle Scholar
  11. 11.
    Oh, T. J., Jung, I. L., & Kim, I. G. (2001). The Escherichia coli SOS gene sbmC is regulated by H-NS and RpoS during the SOS induction and stationary growth phase. Biochemical and Biophysical Research Communications, 288, 1052–1058.CrossRefGoogle Scholar
  12. 12.
    De Biase, D., Tramonti, A., Bossa, F., & Visca, P. (1999). The response to stationary-phase stress conditions in Escherichia coli: Role and regulation of the glutamic acid decarboxylase system. Molecular Microbiology, 32, 1198–1211.CrossRefGoogle Scholar
  13. 13.
    Amano, F. (2011). SEp22, Salmonella Dps, a key molecule bearing both pathogenicity and resistance to environmental stresses in Salmonella. Journal of Health Science, 57, 458–471.CrossRefGoogle Scholar
  14. 14.
    Schnetz, K. (2008). Fine-tuned growth phase control of dps, encoding a DNA protection protein, by FIS and H-NS. Molecular Microbiology, 68, 1345–1347.CrossRefGoogle Scholar
  15. 15.
    Zafar, M. A., Carabetta, V. J., Mandel, M. J., & Silhavy, T. J. (2014). Transcriptional occlusion caused by overlapping promoters. Proceedings of the National Academy of Sciences USA, 111, 1557–1561.CrossRefGoogle Scholar
  16. 16.
    Beloin, C., Valle, J., Latour-Lambert, P., Faure, P., Kzreminski, M., Balestrino, D., Haagensen, J. A., Molin, S., Prensier, G., Arbeille, B., & Ghigo, J. M. (2004). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Molecular Microbiology, 51, 659–674.CrossRefGoogle Scholar
  17. 17.
    Khil, P. P., & Camerini-Otero, R. D. (2002). Over 1000 genes are involved in the DNA damage response of Escherichia coli. Molecular Microbiology, 44, 89–105.CrossRefGoogle Scholar
  18. 18.
    Retnoningrum, D. S., Rahayu, A. P., Mulyanti, D., Dita, A., Valerius, O., & Ismaya, W. T. (2016). Unique characteristics of recombinant hybrid manganese superoxide dismutase from Staphylococcus equorum and S. saprophyticus. Protein Journal, 35, 136–144.CrossRefGoogle Scholar
  19. 19.
    Chung, C. T., Niemela, S. L., & Miller, R. H. (1989). One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proceedings of the National Academy of Sciences USA, 86, 2172–2175.CrossRefGoogle Scholar
  20. 20.
    Lee, K., & Choi, C. Y. (1987). Growth and plasmid stability of recombinant E. coli cells producing hepatitis B surface antigen. Korean Journal of Chemical Engineering, 4, 182–186.CrossRefGoogle Scholar
  21. 21.
    Popov, M., Petrov, S., Kirilov, K., Nacheva, G., & Ivanov, I. (2015). Segregational instability in E. coli of expression plasmids carrying human interferon gamma gene and its 3′-end truncated variants. Biotechnology and Biotechnological Equipment, 23(sup1), 840–843.CrossRefGoogle Scholar
  22. 22.
    Anindyajati, A., Riani, C., & Retnoningrum, D. S. (2016). Plasmid copy number determination by quantitative polymerase chain reaction. Scientia Pharmaceutica, 84, 89–101.CrossRefGoogle Scholar
  23. 23.
    Da Silva, N. A., & Srikrishnan, S. (2012). Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Research, 12, 197–214.CrossRefGoogle Scholar
  24. 24.
    Shimada, T., Makinoshima, H., Ogawa, Y., Miki, T., Maeda, M., & Ishihama, A. (2004). Classification and strength measurement of stationary-phase promoters by use of a newly developed promoter cloning vector. Journal of Bacteriology, 186, 7112–7122.CrossRefGoogle Scholar
  25. 25.
    Hamilton, E. P., & Lee, N. (1988). Three binding sites for AraC protein are required for autoregulation of araC in Escherichia coli. Proceedings of the National Academy of Sciences USA, 85, 1749–1753.CrossRefGoogle Scholar
  26. 26.
    Lee, T. S., Krupa, R. A., Zhang, F., Hajimorad, M., Holtz, W. J., Prasad, N., Lee, S. K., & Keasling, J. D. (2011). BglBrick vectors and datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering, 5, 1–14.CrossRefGoogle Scholar
  27. 27.
    Grainger, D. C., Goldberg, M. D., Lee, D. J., & Busby, S. J. W. (2008). Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Molecular Microbiology, 68, 1366–1377.CrossRefGoogle Scholar
  28. 28.
    Romanowski, M. J., Gibney, S. A., & Burley, S. K. (2002). Crystal structure of the Escherichia coli SbmC protein that protects cells from the DNA replication inhibitor microcin B17. Protein, 47, 403–407.CrossRefGoogle Scholar
  29. 29.
    Yeiser, B., Pepper, E. D., Goodman, M. F., & Finkel, S. E. (2002). SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proceedings of the National Academy of Sciences USA, 99, 8737–8741.CrossRefGoogle Scholar
  30. 30.
    Einsfeldt, K., Severo Júnior, J. B., Corrêa Argondizzo, A. P., Medeiros, M. A., Alves, T. L. M., Almeida, R. V., & Larentis, A. L. (2011). Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: Study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability. Vaccine, 29, 7136–7143.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Pharmaceutical Biotechnology, School of PharmacyInstitut Teknologi BandungBandungIndonesia

Personalised recommendations