Advertisement

Molecular Biotechnology

, Volume 57, Issue 2, pp 184–194 | Cite as

Efficient Differentiation of Human Embryonic Stem Cells Toward Dopaminergic Neurons Using Recombinant LMX1A Factor

  • Ali Fathi
  • Hassan Rasouli
  • Meghdad Yeganeh
  • Ghassem Hosseini SalekdehEmail author
  • Hossein BaharvandEmail author
Research

Abstract

Direct differentiation of dopaminergic (DA) neurons from human pluripotent stem cells (hPSCs) in the absence of gene manipulation is the most desired alternative to clinical treatment of Parkinson disease. Protein transduction-based methods could be efficient, safe approaches to enhance direct differentiation of human embryonic stem cells (hESCs) to DA neurons. In the present study, we compared the differentiation efficiency of DA neurons from hESCs with and without the application of LIM homeobox transcription factor 1 alpha (LMX1A), a master regulatory protein in the development of the midbrain neurons and SHH proteins. The results obtained revealed that the treatment of hESCs with recombinant LMX1A (rLMX1A) protein along with dual SMAD inhibition led to higher expression of LMX1B, LMX1A, FOXA2, PITX3, EN1, and WNT1 effector endogenous genes and two-fold expression of PITX3. Moreover, the highest expression level of PITX3 and TH was observed when rLMX1A was added to the induction medium supplemented with SHH. To our best knowledge, this is the first report demonstrating the application of TAT-LMX1A recombinant protein to enhance hESC differentiation to DA as shown by the expression of DA specific makers. These findings pave the way for enhancing the differentiation of hESCs to DA neurons safely and efficiently without genetic modification.

Keywords

Dopaminergic neuron Differentiation Protein transduction LMX1A 

Abbreviations

DA

Dopaminergic neuron

hESC

Human embryonic stem cell

PD

Parkinson disease

TAT

Trans-activator of transcription

Notes

Acknowledgments

This study was funded through the grants provided by Royan Institute (#90000499). We are grateful to the members of the Department of Stem Cells and Developmental Biology, Royan Institure, for their critical comments.

Conflict of interest

The authors declare they have no competing financial interests.

Supplementary material

12033_2014_9814_MOESM1_ESM.pdf (453 kb)
Supplementary material 1 (PDF 453 kb)

References

  1. 1.
    Cho, M. S., Lee, Y. E., Kim, J. Y., Chung, S., Cho, Y. H., Kim, D. S., et al. (2008). Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 3392–3397.CrossRefGoogle Scholar
  2. 2.
    Fasano, C. A., Chambers, S. M., Lee, G., Tomishima, M. J., & Studer, L. (2010). Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell, 6, 336–347.CrossRefGoogle Scholar
  3. 3.
    Lee, H. S., Bae, E. J., Yi, S. H., Shim, J. W., Jo, A. Y., Kang, J. S., et al. (2010). Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting improved differentiation, function, and cell survival. Stem Cells, 28, 501–512.Google Scholar
  4. 4.
    Ganat, Y. M., Calder, E. L., Kriks, S., Nelander, J., Tu, E. Y., Jia, F., et al. (2012). Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment. Clinical Investigation, 122, 2928–2939.CrossRefGoogle Scholar
  5. 5.
    Kriks, S., Shim, J.-W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480, 547–551.Google Scholar
  6. 6.
    Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., & Lundblad, M. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports, 1, 703–714.CrossRefGoogle Scholar
  7. 7.
    Hegarty, S. V., Sullivan, A. M., & O’Keeffe, G. W. (2013). Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Developmental Biology, 379, 123–138.CrossRefGoogle Scholar
  8. 8.
    Studer, L. (2012). Derivation of dopaminergic neurons from pluripotent stem cells. Progress in Brain Research, 200, 243–263.CrossRefGoogle Scholar
  9. 9.
    Gump, J. M., & Dowdy, S. F. (2007). Tat transduction: the molecular mechanism and therapeutic prospects. Trends in Molecular Medicine, 13, 443–448.CrossRefGoogle Scholar
  10. 10.
    Dietz, G. P., & Bahr, M. (2007). Synthesis of cell-penetrating peptides and their application in neurobiology. Methods in Molecular Biology, 399, 181–198.CrossRefGoogle Scholar
  11. 11.
    Dietz, G. P., & Bahr, M. (2004). Delivery of bioactive molecules into the cell: the Trojan horse approach. Molecular and Cellular Neurosciences, 27, 85–131.CrossRefGoogle Scholar
  12. 12.
    Andersson, E., Tryggvason, U., Deng, Q., Friling, S., Alekseenko, Z., Robert, B., et al. (2006). Identification of intrinsic determinants of midbrain dopamine neurons. Cell, 124, 393–405.CrossRefGoogle Scholar
  13. 13.
    Ono, Y., Nakatani, T., Sakamoto, Y., Mizuhara, E., Minaki, Y., Kumai, M., et al. (2007). Differences in neurogenic potential in floor plate cells along an anteroposterior location: Midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development, 134, 3213–3225.CrossRefGoogle Scholar
  14. 14.
    Chung, S., Kim, C. H., & Kim, K. S. (2012). Lmx1a regulates dopamine transporter gene expression during ES cell differentiation and mouse embryonic development. Journal of Neurochemistry, 122, 244–250.CrossRefGoogle Scholar
  15. 15.
    Ang, S. L. (2006). Transcriptional control of midbrain dopaminergic neuron development. Development, 133, 3499–3506.CrossRefGoogle Scholar
  16. 16.
    Friling, S., Andersson, E., Thompson, L. H., Jonsson, M. E., Hebsgaard, J. B., Nanou, E., et al. (2009). Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 7613–7618.CrossRefGoogle Scholar
  17. 17.
    Sanchez-Danes, A., Consiglio, A., Richaud, Y., Rodriguez-Piza, I., Dehay, B., Edel, M., et al. (2012). Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of Lmx1a in human embryonic stem cells and induced pluripotent stem cells. Human Gene Therapy, 23, 56–69.CrossRefGoogle Scholar
  18. 18.
    Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., et al. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 108, 10343–10348.CrossRefGoogle Scholar
  19. 19.
    Caiazzo, M., Dell’Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476, 224–227.CrossRefGoogle Scholar
  20. 20.
    Wadia, J. S., & Dowdy, S. F. (2002). Protein transduction technology. Current Opinion in Biotechnology, 13, 52–56.CrossRefGoogle Scholar
  21. 21.
    Kwon, Y. D., Oh, S. K., Kim, H. S., Ku, S. Y., Kim, S. H., Choi, Y. M., et al. (2005). Cellular manipulation of human embryonic stem cells by TAT-PDX1 protein transduction. Molecular Therapy: The Journal of The American Society of Gene Therapy, 12, 28–32.CrossRefGoogle Scholar
  22. 22.
    Noda, T., Kawamura, R., Funabashi, H., Mie, M., & Kobatake, E. (2006). Transduction of Neurod2 protein induced neural cell differentiation. Journal of Biotechnology, 126, 230–236.CrossRefGoogle Scholar
  23. 23.
    Stock, K., Nolden, L., Edenhofer, F., Quandel, T., & Brustle, O. (2010). Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction. Cellular and Molecular Life Sciences, 67, 2439–2449.CrossRefGoogle Scholar
  24. 24.
    Fonoudi, H., Yeganeh, M., Fattahi, F., Ghazizadeh, Z., Rassouli, H., Alikhani, M., et al. (2013). ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells. PloS One, 8, e55577.CrossRefGoogle Scholar
  25. 25.
    Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472–476.CrossRefGoogle Scholar
  26. 26.
    Bosnali, M., & Edenhofer, F. (2008). Generation of transducible versions of transcription factors Oct4 and Sox2. Biological Chemistry, 389, 851–861.CrossRefGoogle Scholar
  27. 27.
    Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.CrossRefGoogle Scholar
  28. 28.
    Cho, H. J., Lee, C. S., Kwon, Y. W., Paek, J. S., Lee, S. H., Hur, J., et al. (2010). Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood, 116, 386–395.CrossRefGoogle Scholar
  29. 29.
    Zhang, H., Ma, Y., Gu, J., Liao, B., Li, J., Wong, J., et al. (2012). Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors. Biomaterials, 33, 5047–5055.CrossRefGoogle Scholar
  30. 30.
    Nemes, C., Varga, E., Polgar, Z., Klincumhom, N., Pirity, M. K., & Dinnyes, A. (2013). Generation of mouse induced pluripotent stem cells by protein transduction. Tissue Engineering Part C: Methods., 20, 383–392.CrossRefGoogle Scholar
  31. 31.
    Chung, S., Leung, A., Han, B. S., Chang, M. Y., Moon, J. I., Kim, C. H., et al. (2009). Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-Foxa2 pathway. Cell Stem Cell, 5, 646–658.CrossRefGoogle Scholar
  32. 32.
    Kirkeby, A., Grealish, S., Wolf, D. A., Nelander, J., Wood, J., Lundblad, M., et al. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports, 1, 703–714.CrossRefGoogle Scholar
  33. 33.
    Gale, E., & Li, M. (2008). Midbrain dopaminergic neuron fate specification: Of mice and embryonic stem cells. Molecular Brain, 1, 8.CrossRefGoogle Scholar
  34. 34.
    Doeppner, T. R., Dietz, G. P., El Aanbouri, M., Gerber, J., Witte, O. W., Bahr, M., et al. (2009). TAT-Bcl-x(L) improves survival of neuronal precursor cells in the lesioned striatum after focal cerebral ischemia. Neurobiology of Disease, 34, 87–94.CrossRefGoogle Scholar
  35. 35.
    Baharvand, H., Ashtiani, S. K., Valojerdi, M. R., Shahverdi, A., Taee, A., & Sabour, D. (2004). Establishment and in vitro differentiation of a new embryonic stem cell line from human blastocyst. Differentiation, 72, 224–229.CrossRefGoogle Scholar
  36. 36.
    Rassouli, H., Tabe Bordbar, M. S., Rezaei Larijani, M., Pakzad, M., Baharvand, H., & Salekdeh, G. H. (2013). Cloning, expression and functional characterization of in-house prepared human basic fibroblast growth factor. Cell Journal, 14, 282–291.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Molecular Systems Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and TechnologyACECRTehranIran
  2. 2.Department of Developmental Biology, University of Science and CultureACECRTehranIran
  3. 3.Department of Biotechnology, College of ScienceUniversity of TehranTehranIran
  4. 4.Department of Systems BiologyAgricultural Biotechnology Research Institute of IranKarajIran
  5. 5.Department of Stem Cells and Developmental Biology at the Cell Science Research Center, Royan Institute for Stem Cell Biology and TechnologyACECRTehranIran

Personalised recommendations