Medical Oncology

, 36:66 | Cite as

Forced expression of NR4A3 induced the differentiation of human neuroblastoma-derived NB1 cells

  • Takayuki Hirano
  • Eri Nagasaki-Maeoka
  • Yoshiaki Ishizuka
  • Atsushi Takatori
  • Yosuke Watanabe
  • Reina Hoshi
  • Shinsuke Yoshizawa
  • Hiroyuki Kawashima
  • Shota Uekusa
  • Kiminobu Sugito
  • Shuichiro Uehara
  • Noboru Fukuda
  • Hiroki Nagase
  • Tadateru Takayama
  • Masayoshi Soma
  • Tsugumichi Koshinaga
  • Kyoko FujiwaraEmail author
Original Paper


Nuclear receptor subfamily 4, group A, member 3 (NR4A3) is a member of the NR4A subgroup of orphan nuclear receptors, implicated in the regulation of diverse biological functions, including metabolism, angiogenesis, inflammation, cell proliferation, and apoptosis. Although many reports have suggested the involvement of NR4A3 in the development and/or progression of tumors, its role varies among tumor types. Previously, we reported that DNA hypomethylation at NR4A3 exon 3 is associated with lower survival rate of neuroblastoma (NB) patients. As hypomethylation of this region results in reduced expression of NR4A3, our observations suggested that NR4A3 functions as a tumor suppressor in NB. However, the exact mechanisms underlying its functions have not been clarified. In the present study, we analyzed public databases and showed that reduced NR4A3 expression was associated with shorter survival period of NB in two out of three datasets. An in vitro study revealed that forced expression of NR4A3 in human NB-derived cell line NB1 resulted in elongation of neurites along with overexpression of GAP43, one of the differentiation markers of NB. On the other hand, siRNA-mediated knockdown of NR4A3 suppressed the expression level of GAP43. Interestingly, the forced expression of NR4A3 induced only the GAP43 but not the other molecules involved in NB cell differentiation, such as MYCN, TRKA, and PHOX2B. These results indicated that NR4A3 directly activates the expression of GAP43 and induces differentiated phenotypes of NB cells, without affecting the upstream signals regulating GAP43 expression and NB differentiation.


Neuroblastoma NR4A3 Differentiation GAP43 



We thank Ms. A. Oguni for her excellent technical assistance and Ms. K. Tagata for her secretarial assistance. The present study was supported in part by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2011–2015) to T.K., N.F., M.S., and K.F.

Compliance with ethical standards

Conflict of interest



  1. 1.
    Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369(9579):2106–20.CrossRefGoogle Scholar
  2. 2.
    Bosse KR, Maris JM. Advances in the translational genomics of neuroblastoma: from improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer. 2016;122(1):20–33.CrossRefGoogle Scholar
  3. 3.
    Caron H. Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol. 1995;24(4):215–21.CrossRefGoogle Scholar
  4. 4.
    Attiyeh EF, London WB, Mosse YP, Wang Q, Winter C, Khazi D, McGrady PW, Seeger RC, Look AT, Shimada H, Brodeur GM, Cohn SL, Matthay KK, Maris JM. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med. 2005;353(21):2243–53.CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Bruemmer D. NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler Thromb Vasc Biol. 2010;30(8):1535–41.CrossRefGoogle Scholar
  6. 6.
    Mohan HM, Aherne CM, Rogers AC, Baird AW, Winter DC, Murphy EP. Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clin Cancer Res. 2012;18(12):3223–8.CrossRefGoogle Scholar
  7. 7.
    Wenzl K, Troppan K, Neumeister P, Deutsch AJ. The nuclear orphan receptor NR4A1 and NR4A3 as tumor suppressors in hematologic neoplasms. Curr Drug Targets. 2015;16(1):38–46.CrossRefGoogle Scholar
  8. 8.
    Wilson AJ, Arango D, Mariadason JM, Heerdt BG, Augenlicht LH. TR3/Nur77 in colon cancer cell apoptosis. Cancer Res. 2003;63(17):5401–7.PubMedGoogle Scholar
  9. 9.
    Holla VR, Mann JR, Shi Q, DuBois RN. Prostaglandin E2 regulates the nuclear receptor NR4A2 in colorectal cancer. J Biol Chem. 2006;281(5):2676–82.CrossRefGoogle Scholar
  10. 10.
    Alexopoulou AN, Leao M, Caballero OL, Da Silva L, Reid L, Lakhani SR, Simpson AJ, Marshall JF, Neville AM, Jat PS. Dissecting the transcriptional networks underlying breast cancer: NR4A1 reduces the migration of normal and breast cancer cell lines. Breast Cancer Res. 2010;12(4):R51.CrossRefGoogle Scholar
  11. 11.
    Inamoto T, Czerniak BA, Dinney CP, Kamat AM. Cytoplasmic mislocalization of the orphan nuclear receptor Nurr1 is a prognostic factor in bladder cancer. Cancer. 2010;116(2):340–6.CrossRefGoogle Scholar
  12. 12.
    Cho SD, Lee SO, Chintharlapalli S, Abdelrahim M, Khan S, Yoon K, Kamat AM, Safe S. Activation of nerve growth factor-induced B alpha by methylene-substituted diindolylmethanes in bladder cancer cells induces apoptosis and inhibits tumor growth. Mol Pharmacol. 2010;77(3):396–404.CrossRefGoogle Scholar
  13. 13.
    Yuan ZY, Dai T, Wang SS, Peng RJ, Li XH, Qin T, Song LB, Wang X. Overexpression of ETV4 protein in triple-negative breast cancer is associated with a higher risk of distant metastasis. OncoTargets Ther. 2014;7:1733–42.CrossRefGoogle Scholar
  14. 14.
    Haller F, Bieg M, Will R, Korner C, Weichenhan D, Bott A, Ishaque N, Lutsik P, Moskalev EA, Mueller SK, Bahr M, Woerner A, Kaiser B, Scherl C, Haderlein M, Kleinheinz K, Fietkau R, Iro H, Eils R, Hartmann A, Plass C, Wiemann S, Agaimy A. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat Commun. 2019;10(1):368.CrossRefGoogle Scholar
  15. 15.
    Rosengren PG, Golovko A, Sundstrom E, Curik I, Lennartsson J, Seltenhammer MH, Druml T, Binns M, Fitzsimmons C, Lindgren G, Sandberg K, Baumung R, Vetterlein M, Stromberg S, Grabherr M, Wade C, Lindblad-Toh K, Ponten F, Heldin CH, Solkner J, Andersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet. 2008;40(8):1004–9.CrossRefGoogle Scholar
  16. 16.
    Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, Conneely OM. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med. 2007;13(6):730–5.CrossRefGoogle Scholar
  17. 17.
    Uekusa S, Kawashima H, Sugito K, Yoshizawa S, Shinojima Y, Igarashi J, Ghosh S, Wang X, Fujiwara K, Ikeda T, Koshinaga T, Soma M, Nagase H. Nr4a3, a possible oncogenic factor for neuroblastoma associated with CpGi methylation within the third exon. Int J Oncol. 2014;44(5):1669–77.CrossRefGoogle Scholar
  18. 18.
    Zhang M, Wu J, Zhong W, Zhao Z, Liu Z. Long non-coding RNA BRE-AS1 represses non-small cell lung cancer cell growth and survival via up-regulating NR4A3. Arch Biochem Biophys. 2018;660:53–63.CrossRefGoogle Scholar
  19. 19.
    Fedorova O, Petukhov A, Daks A, Shuvalov O, Leonova T, Vasileva E, Aksenov N, Melino G, Barlev NA. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene. 2019;38(12):2108–22.CrossRefGoogle Scholar
  20. 20.
    Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35.CrossRefGoogle Scholar
  21. 21.
    Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313(18):1111–6.CrossRefGoogle Scholar
  22. 22.
    Look AT, Hayes FA, Shuster JJ, Douglass EC, Castleberry RP, Bowman LC, Smith EI, Brodeur GM. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol. 1991;9(4):581–91.CrossRefGoogle Scholar
  23. 23.
    Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, Zhu S, Xia Q, Ding HF, Cui H. Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett. 2015;9(6):2507–14.CrossRefGoogle Scholar
  24. 24.
    Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994;368(6468):246–9.CrossRefGoogle Scholar
  25. 25.
    Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM. Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res. 1992;52(5):1364–8.PubMedGoogle Scholar
  26. 26.
    Thiele CJ, Reynolds CP, Israel MA. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature. 1985;313(6001):404–6.CrossRefGoogle Scholar
  27. 27.
    Alam G, Cui H, Shi H, Yang L, Ding J, Mao L, Maltese WA, Ding HF. MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. Am J Pathol. 2009;175(2):856–66.CrossRefGoogle Scholar
  28. 28.
    Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res. 2009;15(10):3244–50.CrossRefGoogle Scholar
  29. 29.
    Benowitz LI, Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997;20(2):84–91.CrossRefGoogle Scholar
  30. 30.
    Strittmatter SM, Igarashi M, Fishman MC. GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth. J Neurosci. 1994;14(9):5503–13.CrossRefGoogle Scholar
  31. 31.
    Holahan M, Routtenberg A. The protein kinase C phosphorylation site on GAP-43 differentially regulates information storage. Hippocampus. 2008;18(11):1099–102.CrossRefGoogle Scholar
  32. 32.
    Kim SN, Kim SG, Park SD, Cho-Chung YS, Hong SH. Participation of type II protein kinase A in the retinoic acid-induced growth inhibition of SH-SY5Y human neuroblastoma cells. J Cell Physiol. 2000;182(3):421–8.CrossRefGoogle Scholar
  33. 33.
    D’Alessio A, De Vita G, Cali G, Nitsch L, Fusco A, Vecchio G, Santelli G, Santoro M, de Fransciscis V. Expression of the RET oncogene induces differentiation of SK-N-BE neuroblastoma cells. Cell Growth Differ. 1995;6(11):1387–94.PubMedGoogle Scholar
  34. 34.
    Ponnio T, Conneely OM. nor-1 regulates hippocampal axon guidance, pyramidal cell survival, and seizure susceptibility. Mol Cell Biol. 2004;24(20):9070–8.CrossRefGoogle Scholar
  35. 35.
    Eggen BJ, Nielander HB, Rensen-de Leeuw MG, Schotman P, Gispen WH, Schrama LH. Identification of two promoter regions in the rat B-50/GAP-43 gene. Brain Res Mol Brain Res. 1994;23(3):221–34.CrossRefGoogle Scholar
  36. 36.
    Mobarak CD, Anderson KD, Morin M, Beckel-Mitchener A, Rogers SL, Furneaux H, King P, Perrone-Bizzozero NI. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells. Mol Biol Cell. 2000;11(9):3191–203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Takayuki Hirano
    • 1
  • Eri Nagasaki-Maeoka
    • 1
  • Yoshiaki Ishizuka
    • 1
  • Atsushi Takatori
    • 2
  • Yosuke Watanabe
    • 1
  • Reina Hoshi
    • 1
  • Shinsuke Yoshizawa
    • 1
  • Hiroyuki Kawashima
    • 1
  • Shota Uekusa
    • 1
  • Kiminobu Sugito
    • 1
  • Shuichiro Uehara
    • 1
  • Noboru Fukuda
    • 3
  • Hiroki Nagase
    • 6
  • Tadateru Takayama
    • 4
  • Masayoshi Soma
    • 4
    • 5
  • Tsugumichi Koshinaga
    • 1
  • Kyoko Fujiwara
    • 4
    • 7
    Email author
  1. 1.Department of Pediatric SurgeryNihon University School of MedicineTokyoJapan
  2. 2.Division of Innovative Cancer TherapeuticsChiba Cancer Center Research InstituteChibaJapan
  3. 3.Division of Nephrology, Hypertension and Endocrinology, Department of MedicineNihon University School of MedicineTokyoJapan
  4. 4.Division of General Medicine, Department of MedicineNihon University School of MedicineTokyoJapan
  5. 5.Sasaki Foundation Kyoundo HospitalChiyoda, TokyoJapan
  6. 6.Laboratory of Cancer GeneticsChiba Cancer Center Research InstituteChibaJapan
  7. 7.Department of AnatomyNihon University School of DentistryTokyoJapan

Personalised recommendations