Advertisement

Medical Oncology

, 36:9 | Cite as

Impact of image guidance on toxicity and tumour outcome in moderately hypofractionated external-beam radiotherapy for prostate cancer

  • B. A. Jereczek-Fossa
  • A. Maucieri
  • G. MarvasoEmail author
  • S. Gandini
  • C. Fodor
  • D. Zerini
  • G. Riva
  • O. Alessandro
  • A. Surgo
  • S. Volpe
  • G. Fanetti
  • S. Arculeo
  • M. A. Zerella
  • S. Parisi
  • P. Maisonneuve
  • A. Vavassori
  • F. Cattani
  • R. Cambria
  • C. Garibaldi
  • A. Starzyńska
  • G. Musi
  • O. De Cobelli
  • M. Ferro
  • F. Nolè
  • D. Ciardo
  • R. Orecchia
Original Paper
  • 137 Downloads

Abstract

To report toxicity and efficacy outcome of moderately hypofractionated image-guided external-beam radiotherapy in a large series of patients treated for prostate cancer (PCa). Between 10/2006 and 12/2015, 572 T1-T3N0M0 PCa patients received 70.2 Gy in 26 fractions at 2.7 Gy/fraction: 344 patients (60%) with three-dimensional conformal radiotherapy (3D-CRT) and 228 (40%) with intensity-modulated radiotherapy (IMRT). Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria and Houston definition (nadir + 2) were used for toxicity and biochemical failure evaluation, respectively. Median age was 74 years (interquartile range 69–77). Compared with 3D-CRT, in IMRT group more high-risk patients (29% vs 18%; P = 0.002) and more high-volume target (75% vs 60%; P < 0.001) were included. Acute gastro-intestinal (GI) toxicity G > 1 were registered in 8% and in 11% IMRT and 3D-CRT patients, respectively, whereas late GI G > 1 were observed in 2% and 16% IMRT and 3D-CRT patients, respectively. Acute genito-urinary (GU) toxicity G > 1 were registered in 26% and 40% IMRT and 3D-CRT patients, respectively, whereas late GU G > 1 occurred in 5% IMRT and 15% 3D-CRT patients. Multivariate proportional hazard Cox models confirmed significantly greater risk of late toxicity with 3D-CRT compared to IMRT for GU > 1 (P = 0.004) and for GI > 1 (P < 0.001). With a median 4-year follow-up, overall survival (OS), clinical progression-free survival (cPFS) and biochemical PFS (bPFS) for the whole series were 91%, 92% and 91%, respectively. cPFS and bPFS were significantly different by risk groups. Multivariate Cox models for bPFS and cPFS showed no difference between irradiation techniques and a significant impact of risk group and initial PSA. Moderately hypofractionated radiotherapy is a viable treatment option for localized PCa with excellent tumour control and satisfactory toxicity profile. IMRT seems associated with a reduction in toxicity, whereas tumour control was equal between IMRT and 3D-CRT patients and depended mainly on the risk category.

Keywords

Prostate cancer Image-guided radiotherapy Hypofractionation Dose escalation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

In this research, no animals were involved. All patients signed a written informed consent for radiation therapy and written informed consent for the use of the anonymized data for research or educational purpose. The study was performed within the Institutional Ethics Committee notification regarding clinical and dosimetric aspects of hypofractionated image-guided RT (IGRT) for PCa (CE Notification No. 79).

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin 2012;62(1):10–29.  https://doi.org/10.3322/caac.20138.CrossRefPubMedGoogle Scholar
  2. 2.
    Ritter M. Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin Radiat Oncol. 2008; 18(4): 249–56.  https://doi.org/10.1016/j.semradonc.2008.04.007.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jereczek-Fossa BA, Vavassori A, Fodor C, et al. Dose escalation for prostate cancer using the three-dimensional conformal dynamic arc technique: analysis of 542 consecutive patients. Int J Radiat Oncol Biol Phys. 2008;71:784–94.  https://doi.org/10.1016/j.ijrobp.2007.10.041.CrossRefPubMedGoogle Scholar
  4. 4.
    De Meerleer GO, Vakaet LA, De Gersem WR, et al. Radiotherapy of prostate cancer with or without intensity modulated beams: a planning comparison. Int J Radiat Oncol Biol Phys. 2000;47:639–48.  https://doi.org/10.1016/S0360-3016(00)00419-3.CrossRefPubMedGoogle Scholar
  5. 5.
    Arcangeli S, Greco C. Hypofractionated radiotherapy for organ-confined prostate cancer: is less more? Nat Rev Urol. 2016 Jul;13(7):400–8.  https://doi.org/10.1038/nrurol.2016.106.CrossRefPubMedGoogle Scholar
  6. 6.
    Koontz BF, Bossi A, Cozzarini C, et al. A systematic review of hypofractionation for primary management of prostate cancer. Eur Urol. 2015;68(4):683–91.  https://doi.org/10.1016/j.eururo.2014.08.009.CrossRefPubMedGoogle Scholar
  7. 7.
    Kupelian PA, Willoughby TR, Reddy CA, et al. Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. Int J Radiat Oncol Biol Phys. 2007;68:1424–30.CrossRefGoogle Scholar
  8. 8.
    Pollack A, Walker G, Horwitz EM, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31:3860–8.  https://doi.org/10.1200/JCO.2013.51.1972.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Arcangeli G, Saracino B, Arcangeli S, et al. Moderate hypofractionation in high-risk, organ-confined prostate cancer: final results of a phase III randomized trial. J Clin Oncol. 2017;35(17):1891–7.  https://doi.org/10.1200/JCO.2016.70.4189.CrossRefPubMedGoogle Scholar
  10. 10.
    Pollack A, Hanlon AL, Horwitz EM, et al. Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncology Biol Phys. 2006;64(2):518–26.  https://doi.org/10.1016/j.ijrobp.2005.07.970.CrossRefGoogle Scholar
  11. 11.
    Jean-Pierre P, Stoyanova R, Penedo F, et al. Treatment-related side effects and quality of life among prostate cancer patients treated with conventional versus hypofractionated intensity modulated radiotherapy: a phase III hypofractionation trial. Int J Radiat Oncol Biol Phys. 2011;81:667.CrossRefGoogle Scholar
  12. 12.
    Hoffman KE, Skinner H, Pugh TJ, et al. Patient-reported urinary, bowel, and sexual function after hypofractionated intensity-modulated radiation therapy for prostate cancer results from a randomized trial. Am J Clin Oncol. 2018 Jun;41(6):558–67.  https://doi.org/10.1097/COC.0000000000000325.CrossRefPubMedGoogle Scholar
  13. 13.
    Prostate cancer. In. National comprehensive cancer network clinical practice guidelines in oncology, version 1.2016. Jenkinstown: National Comprehensive Cancer Network; March 2016. http://ww.nccn.org/professionals/physician_gls/default.asp.
  14. 14.
    Jereczek-Fossa BA, Zerini D, Fodor C, et al. Acute toxicity of image-guided hypofractionated radiotherapy for prostate cancer: nonrandomized comparison with conventional fractionation. Urol Oncol. 2011;29(5):523–32.  https://doi.org/10.1016/j.urolonc.2009.10.004.CrossRefPubMedGoogle Scholar
  15. 15.
    ICRU. Report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). Bethesda: International Commission on Radiation Units and Measurements; 1999.Google Scholar
  16. 16.
    Garibaldi C, Jereczek-Fossa BA, Zerini D, et al. Image-guided radiotherapy for prostate cancer using 3 different techniques: localization data of 186 patients. Tumori. 2015;101(3):273–80.  https://doi.org/10.5301/tj.5000322.CrossRefPubMedGoogle Scholar
  17. 17.
    Cambria R, Cattani F, Jereczek-Fossa BA, et al. Planning study to compare dynamic and rapidarc techniques for post-prostatectomy radiotherapy of prostate cancer. Strahlenther Onkol. 2014;190(6):569–74.  https://doi.org/10.1007/s00066-014-0601-9.CrossRefPubMedGoogle Scholar
  18. 18.
    Jereczek-Fossa BA, Cattani F, D’Onofrio A, et al. Dose distribution in three-dimensional conformal radiotherapy for prostate cancer: comparison of two treatment techniques (six coplanar fields and two dynamic arcs). Radiother Oncol. 2006;81:294–302.  https://doi.org/10.1016/j.radonc.2006.10.013.CrossRefPubMedGoogle Scholar
  19. 19.
    Greco C, Mazzetta C, Cattani F, et al. Finding dose-volume constraints to reduce late rectal toxicity following 3D-conformal radiotherapy (3D-CRT) of prostate cancer. Radiother Oncol. 2003;69:215–22.  https://doi.org/10.1016/j.radonc.2003.08.003.CrossRefPubMedGoogle Scholar
  20. 20.
    Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31:1341–6.  https://doi.org/10.1016/0360-3016(95)00060-C.CrossRefPubMedGoogle Scholar
  21. 21.
    Roach M III, Hanks G, Thames T Jr. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006;65:965–974.  https://doi.org/10.1016/j.ijrobp.2006.04.029.
  22. 22.
    Kupelian PA, Buchsbaum JC, Elsaikh MA, et al. Improvement in relapse-free survival throughout the PSA era in patients with localized prostate cancer treated with definitive radiotherapy: Year of treatment an independent predictor of outcome. Int J Radiat Oncol Biol Phys. 2003;57:629–34.  https://doi.org/10.1016/S0360-3016(03)00630-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Eade TN, Hanlon AL, Horwitz EM, et al. What dose of external-beam radiation is high enough for prostate cancer? Int J Radiat Oncol Biol Phys. 2007;68(3):682–9.CrossRefGoogle Scholar
  24. 24.
    Vicini FA, Abner A, Baglan KL, et al. Defining a dose-response relationship with radiotherapy for prostate cancer: Is more really better? Int J Radiat Oncol Biol Phys. 2001;51(5):1200–8.  https://doi.org/10.1016/S0360-3016(01)01799-0.CrossRefPubMedGoogle Scholar
  25. 25.
    Shaikh T, Li T, Handorf EA, Johnson ME, et al. Long-term patient-reported outcomes from a phase 3 randomized prospective trial of conventional versus hypofractionated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2017;15(4):722–31.  https://doi.org/10.1016/j.ijrobp.2016.12.034. 97) .CrossRefGoogle Scholar
  26. 26.
    http://www.isrctn.com/ISRCTN97182923. Accessed 25 Nov 2018.
  27. 27.
    http://www.isrctn.com/ISRCTN85138529. Accessed 25 Nov 2018.
  28. 28.
  29. 29.
  30. 30.
    Whelan TJ, Pignol JP, Levine MN, et al. Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med. 2010;362(6):513–20.  https://doi.org/10.1056/NEJMoa0906260.CrossRefPubMedGoogle Scholar
  31. 31.
    Incrocci L, Wortel RC, Alemayehu WG, et al. Hypofractionated versus conventionally fractionated radiotherapy for Patients with localized prostate cancer (HYPRO): final efficacy results from a randomized, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17(8):1061–9.  https://doi.org/10.1016/S1470-2045(16)30070-5.CrossRefPubMedGoogle Scholar
  32. 32.
    Dearnaley D, Syndikus I, Mossop H, et al. 5 year outcomes of a phase III randomised trial of conventional or hypofractionated high dose intensity modulated radiotherapy for prostate cancer: report from the CHHiP Trial Investigators Group. Eur J Cancer. 2015;51:712.  https://doi.org/10.1016/S0959-8049(16)31932-3.CrossRefGoogle Scholar
  33. 33.
    Yu T, Zhang Q, Zheng T, et al. The effectiveness of intensity modulated radiation therapy versus three-dimensional radiation therapy in prostate cancer: A meta-analysis of the literatures. PloS ONE. 2016;11:e0154499.  https://doi.org/10.1371/journal.pone.0154499.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sujenthiran A, Nossiter J, Charman SC, et al. National population-based study comparing treatment-related toxicity in men who received intensity modulated versus 3-dimensional conformal radical radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2017;99(5):1253–60.  https://doi.org/10.1016/j.ijrobp.2017.07.040.CrossRefPubMedGoogle Scholar
  35. 35.
    Wortel RC, Incrocci L, Pos FJ, et al. Late side effects after image guided intensity modulated radiation therapy compared to 3D-conformal radiation therapy for prostate cancer: Results from 2 prospective cohorts. Int J Radiat Oncol Biol Phys. 2016;95(2):680–9.  https://doi.org/10.1016/j.ijrobp.2016.01.031.CrossRefPubMedGoogle Scholar
  36. 36.
    Wortel RC, Incrocci L, Pos FJ, et al. Acute toxicity after image-guided intensity modulated radiation therapy compared to 3D conformal radiation therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys. 2015;91(4):737–44.  https://doi.org/10.1016/j.ijrobp.2014.12.017.CrossRefPubMedGoogle Scholar
  37. 37.
    Zelefsky MJ, Fuks Z, Happersett L, et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol. 2000;55:241–9.  https://doi.org/10.1016/S0167-8140(99)00100-0.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. A. Jereczek-Fossa
    • 1
    • 2
  • A. Maucieri
    • 1
  • G. Marvaso
    • 1
    Email author
  • S. Gandini
    • 3
  • C. Fodor
    • 1
  • D. Zerini
    • 1
  • G. Riva
    • 1
    • 2
  • O. Alessandro
    • 1
    • 2
  • A. Surgo
    • 1
  • S. Volpe
    • 1
    • 2
  • G. Fanetti
    • 1
  • S. Arculeo
    • 1
    • 2
  • M. A. Zerella
    • 1
    • 2
  • S. Parisi
    • 1
  • P. Maisonneuve
    • 4
  • A. Vavassori
    • 1
  • F. Cattani
    • 5
  • R. Cambria
    • 5
  • C. Garibaldi
    • 6
  • A. Starzyńska
    • 7
  • G. Musi
    • 8
  • O. De Cobelli
    • 2
    • 8
  • M. Ferro
    • 8
  • F. Nolè
    • 9
  • D. Ciardo
    • 1
  • R. Orecchia
    • 10
  1. 1.Department of Radiation OncologyIEO, European Institute of Oncology IRCCSMilanItaly
  2. 2.Department of Oncology and Hemato-OncologyUniversity of MilanMilanItaly
  3. 3.Department of Experimental OncologyEuropean Institute of OncologyMilanItaly
  4. 4.Division of Epidemiology and BiostatisticsIEO, European Institute of Oncology IRCCSMilanItaly
  5. 5.Unit of Medical PhysicsIEO, European Institute of Oncology IRCCSMilanItaly
  6. 6.Radiation Research UnitIEO, European Institute of Oncology IRCCSMilanItaly
  7. 7.Department of Oral SurgeryMedical University of GdańskGdańskPoland
  8. 8.Department of UrologyIEO, European Institute of Oncology IRCCSMilanItaly
  9. 9.Medical Oncology Division of Urogenital and Head and Neck TumoursIEO, European Institute of Oncology IRCCSMilanItaly
  10. 10.Scientific DirectorateIEO, European Institute of Oncology IRCCSMilanItaly

Personalised recommendations