Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lixisenatide Reduced Damage in Hippocampus CA1 Neurons in a Rat Model of Cerebral Ischemia-Reperfusion Possibly Via the ERK/P38 Signaling Pathway

Abstract

Glucagon-like peptide-1 (GLP-1) is a gut-derived peptide that has various physiological actions. One of its main actions is the regulation of blood glucose level when it is elevated as it potentiates insulin release. It is also known that GLP-1 protects neurons from damage caused by neurodegenerative diseases. Lixisenatide is one of the GLP-1 analogues that has a strong affinity to the GLP-1 receptor. Experimental animal studies have shown that it holds a neuroprotective effect in Parkinson, myocardial, and cerebral ischemic disease animal models. The beneficial effect of lixisenatide on the brain after cerebral ischemia-reperfusion (I/R) is not clarified yet; thus, it needs further explanatory studies. Our research is the first to study the effect of lixisenatide on myeloperoxidase (MPO) and toll-like receptors (TLRs)/mitogen-activated protein kinase (MAPK) pathway in a rat model of cerebral I/R. Lixisenatide with 2 doses 0.7 and 7 nmol/kg was given intraperitoneal in 2 different groups for 14 days; then, the bilateral common carotid artery was occluded for 1 h followed by reperfusion for 1 h. Examination of hippocampus CA1 neurons by Nissl stain showed that the number of intact neurons was elevated in the lixisenatide-treated group related to the control group (I/R group). Lixisenatide exhibited neuroprotection action possibly via downregulation of MPO, TLR2/4, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and pP38 and upregulation of phosphorylated extracellular signal–regulated kinase (pERK1/2); thus, this study gives possible link between lixisenatide and TLR/MAPK pathway following cerebral I/R and supports the use of lixisenatide for neuroprotection against stroke.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdel-Latif RG, Heeba GH, Taye A, Khalifa MMA (2018a) Lixisenatide ameliorates cerebral ischemia-reperfusion injury via GLP-1 receptor dependent/independent pathways. Eur J Pharmacol 833:145–154. https://doi.org/10.1016/j.ejphar.2018.05.045

  2. Abdel-Latif RG, Heeba GH, Taye A, Khalifa MMA (2018b) Lixisenatide, a novel GLP-1 analog, protects against cerebral ischemia/reperfusion injury in diabetic rats. Naunyn Schmiedeberg’s Arch Pharmacol 391:705–717. https://doi.org/10.1007/s00210-018-1497-1

  3. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276:13–26. https://doi.org/10.1111/j.1742-4658.2008.06766.x

  4. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337. https://doi.org/10.1016/s0143-4160(03)00141-6

  5. Bakthavachalam P, Shanmugam PST (2017) Mitochondrial dysfunction - silent killer in cerebral ischemia. J Neurol Sci 375:417–423. https://doi.org/10.1016/j.jns.2017.02.043

  6. Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, Legos JJ, Erhardt JA, Ohlstein EH, Hunter AJ, Harrison DC, Philpott K, Smith BR, Adams JL, Parsons AA (2001) Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev 21:129–145. https://doi.org/10.1002/1098-1128(200103)21:2<129::aid-med1003>3.0.co;2-h

  7. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner L, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139:e56–e528. https://doi.org/10.1161/cir.0000000000000659

  8. Beray-Berthat V, Croci N, Plotkine M, Margaill I (2003) Polymorphonuclear neutrophils contribute to infarction and oxidative stress in the cortex but not in the striatum after ischemia-reperfusion in rats. Brain Res 987:32–38. https://doi.org/10.1016/s0006-8993(03)03224-4

  9. Bullock BP, Heller RS, Habener JF (1996) Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137:2968–2978. https://doi.org/10.1210/endo.137.7.8770921

  10. Cai HY, Yang JT, Wang ZJ, Zhang J, Yang W, Wu MN, Qi JS (2018) Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 495:1034–1040. https://doi.org/10.1016/j.bbrc.2017.11.114

  11. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837. https://doi.org/10.1038/nri2873

  12. Cui L, Zhang X, Yang R, Liu L, Wang L, Li M, Du W (2010) Baicalein is neuroprotective in rat MCAO model: role of 12/15-lipoxygenase, mitogen-activated protein kinase and cytosolic phospholipase A2. Pharmacol Biochem Behav 96:469–475. https://doi.org/10.1016/j.pbb.2010.07.007

  13. Dong L, Qiao H, Zhang X, Zhang X, Wang C, Wang L, Cui L, Zhao J, Xing Y, Li Y, Liu Z, Zhu C (2013) Parthenolide is neuroprotective in rat experimental stroke model: downregulating NF-κB, phospho-p38MAPK, and caspase-1 and ameliorating BBB permeability. Mediat Inflamm 2013:370804–370804. https://doi.org/10.1155/2013/370804

  14. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. https://doi.org/10.1016/0003-9861(59)90090-6

  15. Frieler RA, Chung Y, Ahlers CG, Gheordunescu G, Song J, Vigil TM, Shah YM, Mortensen RM (2017) Genetic neutrophil deficiency ameliorates cerebral ischemia-reperfusion injury. Exp Neurol 298:104–111. https://doi.org/10.1016/j.expneurol.2017.08.016

  16. Gault VA, Holscher C (2018) GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides 100:101–107. https://doi.org/10.1016/j.peptides.2017.11.017

  17. Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76:141–165. https://doi.org/10.1146/annurev.biochem.76.060305.151318

  18. Gesuete R, Kohama SG, Stenzel-Poore MP (2014) Toll-like receptors and ischemic brain injury. J Neuropathol Exp Neurol 73:378–386. https://doi.org/10.1097/NEN.0000000000000068

  19. Grieco M, Giorgi A, Gentile MC, d’Erme M, Morano S, Maras B, Filardi T (2019) Glucagon-like peptide-1: a focus on neurodegenerative diseases. Front Neurosci 13:1112. https://doi.org/10.3389/fnins.2019.01112

  20. Gulke E, Gelderblom M, Magnus T (2018) Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 11:1756286418774254. https://doi.org/10.1177/1756286418774254

  21. Guo NF, Cao YJ, Chen X, Zhang Y, Fan YP, Liu J, Chen XL (2019) Lixisenatide protects doxorubicin-induced renal fibrosis by activating wNF-kappaB/TNF-alpha and TGF-beta/Smad pathways. Eur Rev Med Pharmacol Sci 23:4017–4026. https://doi.org/10.26355/eurrev_201905_17832

  22. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D, ECASS Investigators (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329. https://doi.org/10.1056/NEJMoa0804656

  23. Hamilton A, Holscher C (2009) Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport 20:1161–1166. https://doi.org/10.1097/WNR.0b013e32832fbf14

  24. Han D, Wei J, Zhang R, Ma W, Shen C, Feng Y, Xia N, Xu D, Cai D, Li Y, Fang W (2016) Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling. Sci Rep 6:35319–35319. https://doi.org/10.1038/srep35319

  25. Holscher C (2012) Potential role of glucagon-like peptide-1 (GLP-1) in neuroprotection. CNS Drugs 26:871–882. https://doi.org/10.2165/11635890-000000000-00000

  26. Huang H, Zhong R, Xia Z, Song J, Feng L (2014) Neuroprotective effects of rhynchophylline against ischemic brain injury via regulation of the Akt/mTOR and TLRs signaling pathways. Molecules 19:11196–11210. https://doi.org/10.3390/molecules190811196

  27. Jiang M, Li J, Peng Q, Liu Y, Liu W, Luo C, Peng J, Li J, Yung KK, Mo Z (2014) Neuroprotective effects of bilobalide on cerebral ischemia and reperfusion injury are associated with inhibition of pro-inflammatory mediator production and down-regulation of JNK1/2 and p38 MAPK activation. J Neuroinflammation 11:167. https://doi.org/10.1186/s12974-014-0167-6

  28. Laurence DR, Bacharach AL (1964) Evaluation of drug activities: pharmacometrics. Academic press, London

  29. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568. https://doi.org/10.1152/physrev.1999.79.4.1431

  30. Liu W, Jalewa J, Sharma M, Li G, Li L, Holscher C (2015) Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 303:42–50. https://doi.org/10.1016/j.neuroscience.2015.06.054

  31. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

  32. Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131. https://doi.org/10.1111/j.1750-3639.1999.tb00214.x

  33. McClean PL, Holscher C (2014) Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology 86:241–258. https://doi.org/10.1016/j.neuropharm.2014.07.015

  34. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

  35. Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278. https://doi.org/10.1016/0003-2697(78)90342-1

  36. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198. https://doi.org/10.1016/j.neuron.2010.07.002

  37. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99. https://doi.org/10.1016/j.bbadis.2009.09.002

  38. Nozaki K, Nishimura M, Hashimoto N (2001) Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol 23:1–19. https://doi.org/10.1385/mn:23:1:01

  39. Pan J, Konstas A-A, Bateman B, Ortolano GA, Pile-Spellman J (2007) Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology 49:93–102. https://doi.org/10.1007/s00234-006-0183-z

  40. Pasare C, Medzhitov R (2004) Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 6:1382–1387. https://doi.org/10.1016/j.micinf.2004.08.018

  41. Peroval MY, Boyd AC, Young JR, Smith AL (2013) A critical role for MAPK signalling pathways in the transcriptional regulation of toll like receptors. PLoS One 8:e51243. https://doi.org/10.1371/journal.pone.0051243

  42. Petersen AB, Knop FK, Christensen M (2013) Lixisenatide for the treatment of type 2 diabetes. Drugs Today 49:537–553. https://doi.org/10.1358/dot.2013.49.9.2020940

  43. Piao CS, Kim JB, Han PL, Lee JK (2003) Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 73:537–544. https://doi.org/10.1002/jnr.10671

  44. Ridder DA, Schwaninger M (2009) NF-kappaB signaling in cerebral ischemia. Neuroscience 158:995–1006. https://doi.org/10.1016/j.neuroscience.2008.07.007

  45. Sato K, Kameda M, Yasuhara T, Agari T, Baba T, Wang F, Shinko A, Wakamori T, Toyoshima A, Takeuchi H, Sasaki T, Sasada S, Kondo A, Borlongan CV, Matsumae M, Date I (2013) Neuroprotective effects of liraglutide for stroke model of rats. Int J Mol Sci 14:21513–21524. https://doi.org/10.3390/ijms141121513

  46. Sawe N, Steinberg G, Zhao H (2008) Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 86:1659–1669. https://doi.org/10.1002/jnr.21604

  47. Seif-El-Nasr M, El-Fattah AA (1995) Lipid peroxide, phospholipids, glutathione levels and superoxide dismutase activity in rat brain after ischaemia: effect of ginkgo biloba extract. Pharmacol Res 32:273–278. https://doi.org/10.1016/s1043-6618(05)80014-3

  48. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408. https://doi.org/10.1016/j.cell.2006.09.024

  49. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11. https://doi.org/10.1172/JCI11830

  50. Tu XK, Yang WZ, Shi SS, Chen Y, Wang CH, Chen CM, Chen Z (2011) Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia. Inflammation 34:463–470. https://doi.org/10.1007/s10753-010-9254-8

  51. Ulrich PT, Kroppenstedt S, Heimann A, Kempski O (1998) Laser-Doppler scanning of local cerebral blood flow and reserve capacity and testing of motor and memory functions in a chronic 2-vessel occlusion model in rats. Stroke 29:2412–2420. https://doi.org/10.1161/01.str.29.11.2412

  52. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68. https://doi.org/10.1016/j.jneuroim.2006.11.014

  53. Wang Y, Ge P, Zhu Y (2013) TLR2 and TLR4 in the brain injury caused by cerebral ischemia and reperfusion. Mediators Inflamm 2013:124614. https://doi.org/10.1155/2013/124614

  54. Werner U, Haschke G, Herling AW, Kramer W (2010) Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept 164:58–64. https://doi.org/10.1016/j.regpep.2010.05.008

  55. Wicinski M, Socha M, Malinowski B et al (2019) Liraglutide and its neuroprotective properties-focus on possible biochemical mechanisms in Alzheimer’s disease and cerebral ischemic events. Int J Mol Sci 20. https://doi.org/10.3390/ijms20051050

  56. Winters L, Winters T, Gorup D, Mitrecic D, Curlin M, Kriz J, Gajovic S (2013) Expression analysis of genes involved in TLR2-related signaling pathway: inflammation and apoptosis after ischemic brain injury. Neuroscience 238:87–96. https://doi.org/10.1016/j.neuroscience.2013.02.001

  57. Wohlfart P, Linz W, Hübschle T, Linz D, Huber J, Hess S, Crowther D, Werner U, Ruetten H (2013) Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies. J Transl Med 11:84–84. https://doi.org/10.1186/1479-5876-11-84

  58. Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci 95:15769–15774. https://doi.org/10.1073/pnas.95.26.15769

  59. Zhao Z, Pu Y (2019) Lixisenatide enhances mitochondrial biogenesis and function through regulating the CREB/PGC-1alpha pathway. Biochem Biophys Res Commun 508:1120–1125. https://doi.org/10.1016/j.bbrc.2018.11.135

  60. Zhao Q, Xu H, Zhang L, Liu L, Wang L (2019) GLP-1 receptor agonist lixisenatide protects against high free fatty acids-induced oxidative stress and inflammatory response. Artif Cells Nanomed Biotechnol 47:2325–2332. https://doi.org/10.1080/21691401.2019.1620248

  61. Zwagerman N, Plumlee C, Guthikonda M, Ding Y (2010) Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res 32:123–126. https://doi.org/10.1179/016164109x12464612122812

Download references

Acknowledgments

The authors would like to thank Dr Ahmed Ragab Hamed, associate professor of therapeutic biochemistry, Pharmaceutical Research Division, National Research Center, for performing the analysis of pERK by Western blot included in the present study.

Author information

Correspondence to Salma N. Gad.

Ethics declarations

Animal care and experimental protocol were approved by the Ethics Committee of Scientific Research, Faculty of Pharmacy, Helwan University (protocol number: 008A2018).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gad, S.N., Nofal, S., Raafat, E.M. et al. Lixisenatide Reduced Damage in Hippocampus CA1 Neurons in a Rat Model of Cerebral Ischemia-Reperfusion Possibly Via the ERK/P38 Signaling Pathway. J Mol Neurosci (2020). https://doi.org/10.1007/s12031-020-01497-9

Download citation

Keywords

  • TLR
  • Lixisenatide
  • Ischemia/reperfusion
  • GLP-1