Role of Melatonin Receptors in Hyperthermia-Induced Acute Seizure Model of Rats

  • Rasim MogulkocEmail author
  • Abdülkerim Kasim Baltaci
  • Leyla Aydin


Melatonin is a neurohormone that has anticonvulsant activity in different experimental seizure models including hyperthermic febrile seizure. However, the mechanisms of this effect are not clear at the receptor level. The aim of the study was to determine which melatonin receptors involve in the hyperthermic febrile seizure model. 22–30 days Wistar male rats were used, and in children, it corresponds to 1.5–2 years. Groups were performed as (1) control, (2) ethanol/saline, (3) DMSO, (4) melatonin (MT), (5) MT + luzindole (LUZ), (6) MT + K-185, (7) MT + prazosin (PRZ), (8) MT + LUZ + K-185, (9) MT + LUZ + PRZ, (10) MT + K-185 + PRZ, and (11) MT + LUZ + PRZ + K-185. The hyperthermic febrile seizure pattern was established by keeping the rats in 45 °C hot water, and the latency, duration, and severity of seizures were determined in all groups. MT, LUZ, K-185, and PRZ were given 15, 45, 15, and 30 min before the induction of seizure, respectively. It was observed that melatonin shortened the duration of seizure, reduced the severity, and did not affect latency and that these effects were not completely blocked by receptor antagonists when compared with control, ethanol/saline, and DMSO groups. In conclusion, the fact that the anticonvulsant effect of melatonin is not completely blocked by all melatonin receptor antagonists. We can conclude that a multimodal mechanism may be responsible for the effect of melatonin receptors alone on the anticonvulsant effect of melatonin. It will be useful to design new pharmacological studies to make the subject clear.


Febrile seizure Melatonin Luzindole K-185 Prazosin Rat 



This study was supported by a grant from the Selcuk University, Scientific Research Council (grant number is 16401130). Authors would like to thank Begüm Aydin Gazi University Faculty of Medicine helps during experiments.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Acuña Castroviejo D, Rosenstein RE, Romeo HE, Cardinali DP (1986) Changes in gamma-aminobutyric acid high affinity binding to cerebral cortex membranes after pinealectomy or melatonin administration to rats. Neuroendocrinology 43:24–31CrossRefGoogle Scholar
  2. Acuña-Castroviejo D, Escames G, Macías M, Muñóz Hoyos A, Molina Carballo A, Arauzo M, Montes R (1995) Cell protective role of melatonin in the brain. J Pineal Res 19:57–63CrossRefGoogle Scholar
  3. Arreola-Espino R, Urquiza-Marín H, Ambriz-Tututi M, Araiza-Saldaña CI, Caram-Salas NL, Rocha-González HI, Mixcoatl-Zecuatl T, Granados-Soto V (2007) Melatonin reduces formalin-induced nociception and tactile allodynia in diabeticrats. Eur J Pharmacol 577:203–210CrossRefGoogle Scholar
  4. Aydin L, Gundogan NU, Yazici C (2015) Anticonvulsant efficacy of melatonin in an experimental model of hyperthermic febrile seizures. Epilepsy Res 118:49–54CrossRefGoogle Scholar
  5. Aydin L, Yurtcu E, Korkmaz Y, Sezer T, Ogus E (2017) Effect of melatonin on cytokine levels in a hyperthermia-induced febrile seizure model. Cell Mol Biol (Noisy-le-grand) 63:11–16CrossRefGoogle Scholar
  6. Aygun H, Aydın D, Inanır S, Ekici F, Ayyıldız M, Agar A (2015) The effects of agomelatine and melatonin on ECoG activity of absence epilepsy model in WAG/Rij rats. Turk J Biol 39:904–910CrossRefGoogle Scholar
  7. Bikjdaouene L, Escames G, León J, Ferrer JM, Khaldy H, Vives F, Acuña-Castroviejo D (2003) Changes in brain amino acids and nitric oxide after melatonin administration in rats with pentylenetetrazole-induced seizures. J Pineal Res 35:54–60CrossRefGoogle Scholar
  8. Borowicz KK, Kamiñski R, G1sior M, Kleinrok Z, Czuczwar SJ (1999) Influence of melatonin upon the protective action of conventional anti-epileptic drugs against maximal electroshock in mice. Eur Neuropsychopharmacol 9: 185–190Google Scholar
  9. Cheng XP, Sun H, Ye ZY, Zhou JN (2012) Melatonin modulates the GABAergic response in cultured rat hippocampal neurons. J Pharmacol Sci 119:177–185CrossRefGoogle Scholar
  10. Costa-Lotufo LV, de Fonteles MM, Lim ISP, de Oliveira AA, Nascimento VS, de Bruin VM, Viana GS (2002) Attenuating effects of melatonin on pilocarpine-induced seizures in rats. Comp Biochem Physiol C 131:521–529Google Scholar
  11. Dabak O, Altun D, Arslan M, Yaman H, Vurucu S, Yesilkaya E, Unay B (2016) Evaluation of plasma melatonin levels in children with afebrile and febrile Seizures. Pediatr Neurol 57:51–55CrossRefGoogle Scholar
  12. Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, Andres AL, Nalcioglu O, Obenaus A, Vezzani A, Baram TZ (2010) Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 30:7484–7494CrossRefGoogle Scholar
  13. Fenoglio-Simeone K, Mazarati A, Sefidvash-Hockley S, Shin D, Wilke J, Milligan H, Sankar R, Rho JM, Maganti R (2009) Anticonvulsant effects of the selective melatonin receptor agonist ramelteon. Epilepsy Behav 16:52–57CrossRefGoogle Scholar
  14. Forcelli PA, Soper C, Duckles A, Gale K, Kondratyev A (2013) Melatonin potentiates the anticonvulsant action of phenobarbital in neonatal rats. Epilepsy Res 107:217–223CrossRefGoogle Scholar
  15. Golombek DA, Fernández Duque D, De Brito Sánchez MG, Burin L, Cardinali DP (1992) Time-dependent anticonvulsant activity of melatonin in hamsters. Eur J Pharmacol 210:253–258CrossRefGoogle Scholar
  16. Inui Y, Hazeki O (2010) Acute effects of melatonin and its time of administration on core body temperature and heart rate in cynomolgus monkeys. J Toxicol Sci 35:383–391CrossRefGoogle Scholar
  17. Łotowska MES, Joanna M, Łotowska JM (2011) The neuroprotective effect of topiramate on the ultrastructure of pyramidal neurons of the hippocampal CA1 and CA3 sectors in an experimental model of febrile seizures in rats. Folia Neuropathol 49:230–236Google Scholar
  18. Manev H, Uz T, Kharlamov A, Joo JY (1996) Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J 10:1546–1551CrossRefGoogle Scholar
  19. Moezi L, Shafaroodi H, Hojati A, Dehpour AR (2011) The interaction of melatonin and agmatine on pentylenetetrazole-induced seizure threshold in mice. Epilepsy Behav 22:200–206CrossRefGoogle Scholar
  20. Molina-Carballo A, Acuña-Castroviejo D, Rodriguez-Cabezas T, Muñoz-Hoyos A (1994) Effects of febrile and epileptic convulsions on daily variations in plasma melatonin concentration in children. J Pineal Res 16:1–9CrossRefGoogle Scholar
  21. Molina-Carballo A, Muñoz-Hoyos A, Sánchez-Forte M, Uberos-Fernández J, Moreno-Madrid F, Acuña-Castroviejo D (2007) Melatonin increases following convulsive seizures may be related to its anticonvulsant properties at physiological concentrations. Neuropediatrics 38:122–125CrossRefGoogle Scholar
  22. Mosińska P, Socała K, Nieoczym D, Laudon M, Storr M, Fichna J, Wlaź P (2016) Anticonvulsant activity of melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, in mice. Behav Brain Res 307:199–207CrossRefGoogle Scholar
  23. Natsume J, Bernasconi N, Miyauchi M, Naiki M, Yokotsuka T, Sofue A, Bernasconi A (2007) Hippocampal volumes and diffusion-weighted image findings in children with prolonged febrile seizures. Acta Neurol Scand 115(Suppl 186):25–28CrossRefGoogle Scholar
  24. Niles LP, Smith LJ, Tenn CC (1997) Modulation of c-fos expression in the rat striatum by diazepam. Neurosci Lett 236:5–8CrossRefGoogle Scholar
  25. Peled N, Shorer Z, Peled E, Pillar G (2001) Melatonin effect on seizures in children with severe neurologic deficit disorders. Epilepsia 42:1208–1210CrossRefGoogle Scholar
  26. Ray M, Mediratta PK, Reeta K, Mahajan P, Sharma KK (2004) Receptor mechanisms involved in the anticonvulsant effect of melatonin in maximal electroshock seizures. Methods Find Exp Clin Pharmacol 26:177–181CrossRefGoogle Scholar
  27. Solmaz I, Gurkanlar D, Gokcil Z, Cuneyt G, Ozkan M, Erdogan E (2009) Antiepileptic activity of melatonin in Guinea pigs with pentylenetetrazol-induced seizures. Neurol Res 2009(31):989–985CrossRefGoogle Scholar
  28. Srinivasan V, Zakaria R, Jeet Singh H, Acuna-Castroviejo D (2012) Melatonin and its agonists in pain modulation and its clinical application. Arch Ital Biol 150:274–289Google Scholar
  29. Srivastava AK, Gupta SK, Jain S, Gupta YK (2002) Effect of melatonin and phenytoin on an intracortical ferric chloride model of posttraumatic seizures in rats. Methods Find Exp Clin Pharmacol 24:145–149CrossRefGoogle Scholar
  30. Wellman P, Ho D, Cepeda-Benito A, Bellinger L, Nation J (2002) Cocaine-induced hypophagia and hyperlocomotion in rats are attenuated by prazosin. Eur J Pharmacol 455:117–126CrossRefGoogle Scholar
  31. Yahyavi-Firouz-Abadi N, Tahsili-Fahadan P, Riazi K, Ghahremani MH, Dehpour AR (2007) Melatonin enhances the anticonvulsant and proconvulsant effects of morphine in mice: role for nitric oxide signaling pathway. Epilepsy Res 75:138–144CrossRefGoogle Scholar
  32. Yamaguchi H, Nagase H, Ishida Y, Toyoshima D, Maruyama A, Tomioka K, Tanaka T, Nishiyama M, Fujita K, Mariko TI, Nozu K, Morioka I, Nishimura N, Kurosawa H, Takada S, Uetani Y, Iijima K (2018) Diurnal occurrence of complex febrile seizure and their severity in pediatric patients needing hospitalization. Epilepsy Behav 80:280–284CrossRefGoogle Scholar
  33. Yildirim M, Marangoz C (2006) Anticonvulsant effects of melatonin on penicillin-induced epileptiform activity in rats. Brain Res 1099:183–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Medical Faculty, Department of PhysiologySelcuk UniversityKonyaTurkey
  2. 2.Department of Physiology, Meram Medical SchoolNecmettin Erbakan UniversityKonyaTurkey

Personalised recommendations