Advertisement

Novel Missense CAPN3 Mutation Responsible for Adult-Onset Limb Girdle Muscular Dystrophy with Calves Hypertrophy

  • Sabrine RekikEmail author
  • Salma Sakka
  • Sawssan Ben Romdhan
  • Nouha Farhat
  • Yasmine Baba Amer
  • Leila Lehkim
  • François Jérôme Authier
  • Chokri Mhiri
Article
  • 12 Downloads

Abstract

CAPN3 gene encodes for calpain-3; this protein is a calcium-dependent intracellular protease. Deficiency of this enzyme leads to weakness of the proximal limb muscles and pelvic and shoulder girdles, the so-called limb-girdle muscular dystrophy type 2A (LGMD2A). Here, we reported the case of a Tunisian patient with LGMD2A associated with a novel missense mutation (c.T1681C/p.Y561H). A 61-year-old man, with consanguineous parents, was referred for gait difficulties and slowly progressive proximal weakness of the four limbs associated with moderate hypertrophy of the calves but his facial muscles were unaffected. Electromyography showed that the profile was myopathic pattern and creatine kinase (CK) level was high. Muscle biopsy processing included routine histological, immunohistochemical, and Western Blot reactions, using a panel of antibodies directed against dystrophin, dysferlin, calpain-3, sarcoglycan α, β, γ, and δ. For mutation analysis, we designed an NGS-based screening. Immunological analyses demonstrated a total deficiency in calpain-3 and δ-sarcoglycan, and a reduced expression of dysferlin. The genetic study yielded a homozygous missense mutation (c.T1681C) of the 13th exon of the CAPN3 gene. The mutation found in our patient (c.T1681C/p.Y561H) has not been previously reported. It is responsible for complete calpain-3 and δ-sarcoglycan deficiency and reduced dysferlin expression. The genetic study is mandatory in such cases with multiple-protein deficiency and ambiguous results of immune-histology and Western Blot studies.

Keywords

Muscular dystrophies Immunohistochemistry Western Blot CAPN3 protein DNA sequencing LGMD2A 

Notes

Acknowledgments

We would like to thank the genomic platform members in IMRB (Institut Mondor de Recherche Biomédicale), all the staff of the Department of Neurology, as well as all the staff of the Laboratory of Pathology, Habib Bourguiba University Hospital in Sfax. We also thank Chokri Khalaf for proofreading the study.

Funding Information

This work was supported by the “Association Française contre les Myopathies” Translamuscle #19507.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Anderson LV, Harrison RM, Pogue R et al (2000) Secondary reduction in calpain 3 expression in patients with limb-girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscul Disord 10:553–559.CrossRefGoogle Scholar
  2. Angelini C, Giaretta L, Marozzo R (2018) An update on diagnostic options and considerations in limb-girdle dystrophies. Expert Rev Neurother 18:693–703.  https://doi.org/10.1080/14737175.2018.1508997 CrossRefGoogle Scholar
  3. Angelini C, Nardetto L, Borsato C, Padoan R, Fanin M, Nascimbeni AC, Tasca E (2010) The clinical course of calpainopathy (LGMD2A) and dysferlinopathy (LGMD2B). Neurol Res 32:41–46.  https://doi.org/10.1179/174313209X380847 CrossRefGoogle Scholar
  4. L Brenguier, I Richard, P Dinçer, C Roudaut, B Bady, J M Burgunder, R Chemaly, C A Garcia, G Halaby, C E Jackson, D M Kurnit, G Lefranc, C Legum, J Loiselet, L Merlini, A Nivelon-Chevallier, E Ollagnon-Roman, G Restagno, H Topaloglu, and J S Beckmann, (1997) Multiple independent molecular etiology for limb-girdle muscular dystrophy type 2A patients from various geographical origins. Am J Hum Genet. 60(5): 1128–1138.Google Scholar
  5. Chae J1, Minami N, Jin Y, Nakagawa M, Murayama K, Igarashi F, Nonaka I. (2001). Calpain 3 gene mutations: genetic and clinico-pathologic findings in limbgirdle muscular dystrophy. Neuromuscul Disord (6-7):547-55.Google Scholar
  6. Chrobáková T, Hermanová M, Kroupová I, Vondráček P, Mařı́ková T', Mazanec R, Zámečnı́k J, Staněk J, Havlová M, Fajkusová L (2004) Mutations in Czech LGMD2A patients revealed by analysis of calpain3 mRNA and their phenotypic outcome. Neuromuscul Disord 14:659–665.  https://doi.org/10.1016/j.nmd.2004.05.005 CrossRefGoogle Scholar
  7. de Paula F, Vainzof M, Passos-Bueno MR, de Cássia M Pavanello R, Matioli SR, V B Anderson L, Nigro V, Zatz M (2002) Clinical variability in calpainopathy: what makes the difference? Eur J Hum Genet 10:825–832.  https://doi.org/10.1038/sj.ejhg.5200888 CrossRefGoogle Scholar
  8. Dinçer P1, Leturcq F, Richard I, Piccolo F, Yalnizoglu D, de Toma C, Akçören Z, Broux O, Deburgrave N, Brenguier L, Roudaut C, Urtizberea JA, Jung D, Tan E, Jeanpierre M, Campbell KP, Kaplan JC, Beckmann JS, Topaloglu H. (1997). A biochemical, genetic, and clinical survey of autosomal recessive limb girdle muscular dystrophies in Turkey. Ann Neurol 42(2):222-9.Google Scholar
  9. Duguez S, Bartoli M, Richard I (2006) Calpain 3: a key regulator of the sarcomere? FEBS J 273:3427–3436.  https://doi.org/10.1111/j.1742-4658.2006.05351.x CrossRefGoogle Scholar
  10. Fadaee M, Kariminejad A, Fattahi Z, Nafissi S, Godarzi HR, Beheshtian M, Vazehan R, Akbari MR, Kahrizi K, Najmabadi H (2016) Report of limb-girdle muscular dystrophy type 2a in 6 Iranian patients, one with a novel deletion in CAPN3 gene. Neuromuscul Disord 26:277–282.  https://doi.org/10.1016/j.nmd.2016.02.003 CrossRefGoogle Scholar
  11. Fanin M, Angelini C (2015) Protein and genetic diagnosis of limb-girdle muscular dystrophy type 2A: the yield and the pitfalls. Muscle Nerve 52:163–173.  https://doi.org/10.1002/mus.24682 CrossRefGoogle Scholar
  12. Fanin M, Fulizio L, Nascimbeni AC, Spinazzi M, Piluso G, Ventriglia VM, Ruzza G, Siciliano G, Trevisan CP, Politano L, Nigro V, Angelini C (2004) Molecular diagnosis in LGMD2A: Mutation analysis or protein testing?. Human Mutation 24 (1):52-62.Google Scholar
  13. Fanin M, Nascimbeni AC, Angelini C (2006) Screening of calpain-3 autolytic activity in LGMD muscle: a functional map of CAPN3 gene mutations. Journal of Medical Genetics 44 (1):38-43.Google Scholar
  14. Fanin M, Nascimbeni AC, Fulizio L, Angelini C (2005) The frequency of limb-girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord 15:218–224.  https://doi.org/10.1016/j.nmd.2004.11.003 CrossRefGoogle Scholar
  15. Fanin M, Nascimbeni AC, Tasca E, Angelini C (2009) How to tackle the diagnosis of limb-girdle muscular dystrophy 2A. European Journal of Human Genetics 17 (5):598-603.Google Scholar
  16. Gregorio CC, Granzier H, Sorimachi H, Labeit S (1999) Muscle assembly: a titanic achievement? Curr Opin Cell Biol 11:18–25.CrossRefGoogle Scholar
  17. Groen EJ, Charlton R, Barresi R, Anderson LV, Eagle M, Hudson J, Koref MS, Straub V, Bushby KMD (2007) Analysis of the UK diagnostic strategy for limb girdle muscular dystrophy 2A. Brain 130:3237–3249.  https://doi.org/10.1093/brain/awm259 CrossRefGoogle Scholar
  18. Guyon JR, Kudryashova E, Potts A, Dalkilic I, Brosius MA, Thompson TG, Beckmann JS, Kunkel LM, Spencer MJ (2003) Calpain 3 cleaves filamin C and regulates its ability to interact with gamma- and delta-sarcoglycans. Muscle Nerve 28:472–483.  https://doi.org/10.1002/mus.10465 CrossRefGoogle Scholar
  19. Hadj Salem I, Kamoun F, Louhichi N, Rouis S, Mziou M, Fendri‑Kriaa N, Makni‑Ayadi F, Triki C, Fakhfakh F (2011) Mutations in LAMA2 and CAPN3 genes associated with genetic and phenotypic heterogeneities within a single consanguineous family involving both congenital and progressive muscular dystrophies. Biosci Rep 31:125–135.  https://doi.org/10.1042/BSR20100026 CrossRefGoogle Scholar
  20. Huang Y, Verheesen P, Roussis A, Frankhuizen W, Ginjaar I, Haldane F, Laval S, Anderson LVB, Verrips T, Frants RR, de Haard H, Bushby K, den Dunnen J, van der Maarel SM (2005) Protein studies in dysferlinopathy patients using llama-derived antibody fragments selected by phage display. Eur J Hum Genet 13:721–730.  https://doi.org/10.1038/sj.ejhg.5201414 CrossRefGoogle Scholar
  21. I. Richard, C. Roudaut, A. Saenz, R. Pogue, J.E.M.A. Grimbergen, L.V.B. Anderson, C. Beley, A-M Cobo, C. de Diego, B. Eymard, P. Gallano, H.B. Ginjaar, A. Lasa, C. Pollitt, H. Topaloglu, J.A. Urtizberea, M. de Visser, A. van der Kooi, K. Bushby, E. Bakker, A. Lopez de Munain, M. Fardeau, J.S. Beckmann, (1999) Calpainopathy—A Survey of Mutations and Polymorphisms. The American Journal of Human Genetics 64 (6):1524-1540.Google Scholar
  22. Jackman RW et al (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 4:834–4–843.Google Scholar
  23. Jennifer M. Thompson M, Moore SA, Liewluck T (2018) A novel CAPN3 mutation in late-onset limb-girdle muscular dystrophy with early respiratory insufficiency. Journal of Clinical Neuroscience 53:229-231.Google Scholar
  24. Kaplan J-C, Hamroun D, Rivier F, Bonne G (2016) The 2017 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord 26:895–929.  https://doi.org/10.1016/j.nmd.2016.11.010 CrossRefGoogle Scholar
  25. Kramerova I, Beckmann JS, Spencer MJ (2007) Molecular and cellular basis of calpainopathy (limb-girdle muscular dystrophy type 2A). Biochim Biophys Acta 1772:128–144.  https://doi.org/10.1016/j.bbadis.2006.07.002 CrossRefGoogle Scholar
  26. Kramerova I, Kudryashova E, Tidball JG, Spencer MJ (2004) Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum Mol Genet 13:1373–1388.  https://doi.org/10.1093/hmg/ddh153 CrossRefGoogle Scholar
  27. Kramerova I, Kudryashova E, Venkatraman G, Spencer MJ (2005) Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway. Hum Mol Genet 14:2125–2134.  https://doi.org/10.1093/hmg/ddi217 CrossRefGoogle Scholar
  28. Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH Jr (2003) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem 278:50466–50473.  https://doi.org/10.1074/jbc.M307247200 CrossRefGoogle Scholar
  29. Nigro V, Savarese M (2014) Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol 33:1–12.Google Scholar
  30. Ono Y, Ojima K, Shinkai-Ouchi F, Hata S, Sorimachi H (2016) An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 122:169–187.  https://doi.org/10.1016/j.biochi.2015.09.010 CrossRefGoogle Scholar
  31. Ono Y, Shimada H, Sorimachi H, Richard I, Saido TC, Beckmann JS, Ishiura S, Suzuki K (1998) Functional defects of a muscle-specific Calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J Biol Chem 273:17073–17078.  https://doi.org/10.1074/jbc.273.27.17073 CrossRefGoogle Scholar
  32. Park HJ, Jang H, Lee JH, Shin HY, Cho SR, Park KD, Bang D, Lee MG, Kim SM, Lee JH, Choi YC (2016) Clinical and pathological heterogeneity of Korean patients with CAPN3 mutations. Yonsei Med J 57:173–179.  https://doi.org/10.3349/ymj.2016.57.1.173 CrossRefGoogle Scholar
  33. Piluso G, Politano L, Aurino S, Fanin M, Ricci E, Ventriglia VM, Belsito A, Totaro A, Saccone V, Topaloglu H, Nascimbeni AC, Fulizio L, Broccolini A, Canki-Klain N, Comi LI, Nigro G, Angelini C, Nigro V (2005) Extensive scanning of the calpain-3 gene broadens the spectrum of LGMD2A phenotypes. J Med Genet 42:686–693.  https://doi.org/10.1136/jmg.2004.028738 CrossRefGoogle Scholar
  34. Rumiko Izumi, Tetsuya Niihori, Toshiaki Takahashi, Naoki Suzuki, Maki Tateyama, Chigusa Watanabe, Kazuma Sugie, Hirotaka Nakanishi, Gen Sobue, Masaaki Kato, Hitoshi Warita, Yoko Aoki, Masashi Aoki, (2015) Genetic profile for suspected dysferlinopathy identified by targeted next-generation sequencing. Neurology Genetics 1 (4):e36.Google Scholar
  35. Shenkman BS, Belova SP, Lomonosova YN, Kostrominova TY, Nemirovskaya TL (2015) Calpain-dependent regulation of the skeletal muscle atrophy following unloading. Arch Biochem Biophys 584:36–41.CrossRefGoogle Scholar
  36. Sorimachi H, Hata S, Ono Y (2011) Impact of genetic insights into calpain biology. J Biochem 150:23–37.  https://doi.org/10.1093/jb/mvr070 CrossRefGoogle Scholar
  37. Srujana et al (2012) Quality control in aminoacyl-tRNA synthesis. Advances in Protein Chemistry and Structural Biology. Adv Protein Chem Struct Bio:1–43.  https://doi.org/10.1016/b978-0-12-386497-0.00001-3
  38. Straub V, Murphy A, Udd B, LGMD workshop study group (2018) 229th ENMC international workshop: limb-girdle muscular dystrophies - nomenclature and reformed classification Naarden, the Netherlands, 17-19 March 2017. Neuromuscul Disord 28:702–710.  https://doi.org/10.1016/j.nmd.2018.05.007 CrossRefGoogle Scholar
  39. Urtasun M, Sáenz A, Roudaut C et al (1998) Limb-girdle muscular dystrophy in Guipúzcoa (Basque Country, Spain). Brain 121(Pt 9):1735–1747.CrossRefGoogle Scholar
  40. Ye Q, Campbell RL, Davies PL (2018) Structures of human calpain-3 protease core with and without bound inhibitor reveal mechanisms of calpain activation. J Biol Chem 293:4056–4070.  https://doi.org/10.1074/jbc.RA117.001097 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Neurogenetics, Parkinson’s Disease and Cerebrovascular Disease (LR-12-SP-19)University Hospital Habib BourguibaSfaxTunisia
  2. 2.Clinical Investigation Center (CIC), CHU Habib BourguibaSfaxTunisia
  3. 3.U955-IMRB, Team 10, Biology of the Neuromuscular System, Inserm, UPECCréteilFrance
  4. 4.Anatomopathology Laboratory, CHU Habib BourguibaSfaxTunisia

Personalised recommendations