Advertisement

Identification of Important Invasion-Related Genes in Non-functional Pituitary Adenomas

  • Harish Joshi
  • Basavaraj Vastrad
  • Chanabasayya VastradEmail author
Article

Abstract

Non-functioning pituitary adenomas (NFPAs) are locally invasive with high morbidity. The objective of this study was to diagnose important genes and pathways related to the invasiveness of NFPAs and gain more insights into the underlying molecular mechanisms of NFPAs. The gene expression profiles of GSE51618 were downloaded from the Gene Expression Omnibus database with 4 non-invasive NFPA samples, 3 invasive NFPA samples, and 3 normal pituitary gland samples. Differentially expressed genes (DEGs) are screened between invasive NFPA samples and normal pituitary gland samples, followed by pathway and ontology (GO) enrichment analyses. Subsequently, a protein–protein interaction (PPI) network was constructed and analyzed for these DEGs, and module analysis was performed. In addition, a target gene–miRNA network and target gene–TF (transcription factor) network were analyzed for these DEGs. A total of 879 DEGs were obtained. Among them, 439 genes were upregulated and 440 genes were downregulated. Pathway enrichment analysis indicated that the upregulated genes were significantly enriched in cysteine biosynthesis/homocysteine degradation (trans-sulfuration) and PI3K-Akt signaling pathway, while the downregulated genes were mainly associated with docosahexaenoate biosynthesis III (mammals) and chemokine signaling pathway. GO enrichment analysis indicated that the upregulated genes were significantly enriched in animal organ morphogenesis, extracellular matrix, and hormone activity, while the downregulated genes were mainly associated with leukocyte chemotaxis, dendrites, and RAGE receptor binding. Subsequently, ESR1, SOX2, TTN, GFAP, WIF1, TTR, XIST, SPAG5, PPBP, AR, IL1R2, and HIST1H1C were diagnosed as the top hub genes in the upregulated and downregulated PPI networks and modules. In addition, HS3ST1, GPC4, CCND2, and SCD were diagnosed as the top hub genes in the upregulated and downregulated target gene–miRNA networks, while CISH, ISLR, UBE2E3, and CCNG2 were diagnosed as the top hub genes in the upregulated and downregulated target gene–TF networks. The new important DEGs and pathways diagnosed in this study may serve key roles in the invasiveness of NFPAs and indicate more molecular targets for the treatment of NFPAs.

Keywords

Non-functioning pituitary adenoma Gene ontology (GO) enrichment analysis Differentially expressed genes PPI network Modules 

Notes

Acknowledgments

The authors thank Jie Feng, Beijing Neurosurgical Institute, Tiantan Xili 6, Chongwen District, Beijing, China, very much, the author who deposited their microarray dataset, GSE51618, into the public GEO database.

Author Contributions

Harish Joshi collected important background information, Chanabasayya Vastrad performed R programming, statistical analysis, and software. Basavaraj Vastrad carried out the design of this study, performed the statistical analysis and visualizations, and drafted the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

There is no informed consent because this study does not contain human or animal participants.

References

  1. Ahmad SA, Liu W, Jung YD et al (2001) The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 61(4):1255–1259PubMedGoogle Scholar
  2. Ai L, Tao Q, Zhong S, Fields CR, Kim WJ, Lee MW, Cui Y, Brown KD, Robertson KD (2006) Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis. 27(7):1341–1348.  https://doi.org/10.1093/carcin/bgi379 CrossRefPubMedGoogle Scholar
  3. Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S, Tse C, Wang K, Mo F, Haegert A, Brahmbhatt S, Bell R, Adomat H, Kawai Y, Xue H, Dong X, Fazli L, Tsai H, Lotan TL, Kossai M, Mosquera JM, Rubin MA, Beltran H, Zoubeidi A, Wang Y, Gleave ME, Collins CC (2015) The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep 12(6):922–936.  https://doi.org/10.1016/j.celrep.2015.07.012 CrossRefPubMedGoogle Scholar
  4. Alarmo EL, Pärssinen J, Ketolainen JM, Savinainen K, Karhu R, Kallioniemi A (2009) BMP7 influences proliferation, migration, and invasion of breast cancer cells. Cancer Lett 275(1):35–43.  https://doi.org/10.1016/j.canlet.2008.09.028 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alatzoglou KS, Andoniadou CL, Kelberman D, Buchanan CR, Crolla J, Arriazu MC, Roubicek M, Moncet D, Martinez-Barbera JP, Dattani MT (2011) SOX2 haploinsufficiency is associated with slow progressing hypothalamo-pituitary tumours. Hum Mutat 32(12):1376–1380.  https://doi.org/10.1002/humu.21606 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aligayer H, Boyd DD, Heiss MM et al (2002) Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer. 94(2):344–351.  https://doi.org/10.1002/cncr.10221 CrossRefPubMedGoogle Scholar
  7. Altenberger T, Bilban M, Auer M, Knosp E, Wolfsberger S, Gartner W, Mineva I, Zielinski C, Wagner L, Luger A (2006) Identification of DLK1 variants in pituitary- and neuroendocrine tumors. Biochem Biophys Res Commun 340(3):995–1005.  https://doi.org/10.1016/j.bbrc.2005.12.094 CrossRefPubMedGoogle Scholar
  8. Arumugam T, Simeone DM, Van Golen K et al (2005) S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 11(15):5356–5364.  https://doi.org/10.1158/1078-0432.CCR-05-0092 CrossRefPubMedGoogle Scholar
  9. Atkin SL, Landolt AM, Jeffreys RV, Diver M, Radcliffe J, White MC (1993) Basic fibroblastic growth factor stimulates prolactin secretion from human anterior pituitary adenomas without affecting adenoma cell proliferation. J Clin Endocrinol Metab 77(3):831–837.  https://doi.org/10.1210/jcem.77.3.8370706 CrossRefPubMedGoogle Scholar
  10. Bhattacharyya S, Saha S, Giri K, Lanza IR, Nair KS, Jennings NB, Rodriguez-Aguayo C, Lopez-Berestein G, Basal E, Weaver AL, Visscher DW, Cliby W, Sood AK, Bhattacharya R, Mukherjee P (2013) Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One 8(11):e79167.  https://doi.org/10.1371/journal.pone.0079167 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brown KR, Jurisica I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8(5):R95.  https://doi.org/10.1186/gb-2007-8-5-r95 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brown RL, Muzzafar T, Wollman R, Weiss RE (2006) A pituitary carcinoma secreting TSH and prolactin: a non-secreting adenoma gone awry. Eur J Endocrinol 154(5):639–643.  https://doi.org/10.1530/eje.1.02141 CrossRefPubMedGoogle Scholar
  13. Caronti B, Palladini G, Bevilacqua MG, Petrangeli E, Fraioli B, Cantore G, Tamburrano G, Carapella CM, Jaffrain-Rea ML (1993) Effects of 17 beta-estradiol, progesterone and tamoxifen on in vitro proliferation of human pituitary adenomas: correlation with specific cellular receptors. Tumour Biol 14(1):59–68CrossRefPubMedGoogle Scholar
  14. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Karp PD (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480.  https://doi.org/10.1093/nar/gkv1164 CrossRefPubMedGoogle Scholar
  15. Chatr-Aryamontri A, Oughtred R, Boucher L et al (2017) The BioGRID interaction database: 2017 update. Nucleic Acids Res 45(D1):D369–D379.  https://doi.org/10.1093/nar/gkw1102 CrossRefPubMedGoogle Scholar
  16. Chen L, O’Bryan JP, Smith HS et al (1990) Overexpression of matrix Gla protein mRNA in malignant human breast cells: isolation by differential cDNA hybridization. Oncogene. 5(9):1391–1395PubMedGoogle Scholar
  17. Chen L, Yuan L, Qian K, Qian G, Zhu Y, Wu CL, Dan HC, Xiao Y, Wang X (2018) Identification of biomarkers associated with pathological stage and prognosis of clear cell renal cell carcinoma by co-expression network analysis. Front Physiol 9:399.  https://doi.org/10.3389/fphys.2018.00399 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chesnokova V, Zonis S, Wawrowsky K, Tani Y, Ben-Shlomo A, Ljubimov V, Mamelak A, Bannykh S, Melmed S (2012) Clusterin and FOXL2 act concordantly to regulate pituitary gonadotroph adenoma growth. Mol Endocrinol 26(12):2092–2103.  https://doi.org/10.1210/me.2012-1158 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Choi KJ, Lee JH, Kim KS et al (2011) Identification of ELAVL4 as a modulator of radiation sensitivity in A549 non-small cell lung cancer cells. Oncol Rep 26(1):55–63.  https://doi.org/10.3892/or.2011.1260 CrossRefPubMedGoogle Scholar
  20. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, Chiew MY, Tai CS, Wei TY, Tsai TR, Huang HT, Wang CY, Wu HY, Ho SY, Chen PR, Chuang CH, Hsieh PJ, Wu YS, Chen WL, Li MJ, Wu YC, Huang XY, Ng FL, Buddhakosai W, Huang PC, Lan KC, Huang CY, Weng SL, Cheng YN, Liang C, Hsu WL, Huang HD (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302.  https://doi.org/10.1093/nar/gkx1067 CrossRefPubMedGoogle Scholar
  21. Colao A, Di Somma C, Pivonello R et al (2008) Medical therapy for clinically non-functioning pituitary adenomas. Endocr Relat Cancer 15(4):905–915.  https://doi.org/10.1677/ERC-08-0181 CrossRefPubMedGoogle Scholar
  22. Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, Biankin AV, Hautaniemi S, Wu J (2012) PINA v2.0: mining interactome modules. Nucleic Acids Res 40(Database issue):D862–D865.  https://doi.org/10.1093/nar/gkr967 CrossRefPubMedGoogle Scholar
  23. Cui C, Shi X (2017) miR-187 inhibits tumor growth and invasion by directly targeting MAPK12 in osteosarcoma. Exp Ther Med 14(2):1045–1050.  https://doi.org/10.3892/etm.2017.4624 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31(1):19–20.  https://doi.org/10.1038/ng0502-19 CrossRefGoogle Scholar
  25. Deng B, Zhang Y, Zhang S, Wen F, Miao Y, Guo K (2015) MicroRNA-142-3p inhibits cell proliferation and invasion of cervical cancer cells by targeting FZD7. Tumour Biol 36(10):8065–8073.  https://doi.org/10.1007/s13277-015-3483-2 CrossRefPubMedGoogle Scholar
  26. Dong Z, Liu Y, Lu S, Wang A, Lee K, Wang LH, Revelo M, Lu S (2006) Vav3 oncogene is overexpressed and regulates cell growth and androgen receptor activity in human prostate cancer. Mol Endocrinol 20(10):2315–2325.  https://doi.org/10.1210/me.2006-0048 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dong Q, Meng P, Wang T, Qin W, Qin W, Wang F, Yuan J, Chen Z, Yang A, Wang H (2010) MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One 5(4):e10147.  https://doi.org/10.1371/journal.pone.0010147 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Duong CV, Yacqub-Usman K, Emes RD, Clayton RN, Farrell WE (2013) The EFEMP1 gene: a frequent target for epigenetic silencing in multiple human pituitary adenoma subtypes. Neuroendocrinology. 98(3):200–211.  https://doi.org/10.1159/000355624 CrossRefPubMedGoogle Scholar
  29. Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, Chande A, Tanaka KE, Stransky N, Greulich H, Gray NS, Meyerson M (2011) Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One 6(6):e20351.  https://doi.org/10.1371/journal.pone.0020351 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Egashira N, Takekoshi S, Takei M, Teramoto A, Osamura RY (2011) Expression of FOXL2 in human normal pituitaries and pituitary adenomas. Mod Pathol 24(6):765–773.  https://doi.org/10.1038/modpathol.2010.169 CrossRefPubMedGoogle Scholar
  31. El-Haibi CP, Singh R, Sharma PK et al (2011) CXCL13 mediates prostate cancer cell proliferation through JNK signalling and invasion through ERK activation. Cell Prolif 44(4):311–319.  https://doi.org/10.1111/j.1365-2184.2011.00757.x CrossRefPubMedGoogle Scholar
  32. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655.  https://doi.org/10.1093/nar/gkx1132 CrossRefPubMedGoogle Scholar
  33. Ferrante E, Ferraroni M, Castrignanò T et al (2006) Non-functioning pituitary adenoma database: a useful resource to improve the clinical management of pituitary tumors. Eur J Endocrinol 155(6):823–829.  https://doi.org/10.1530/eje.1.02298 CrossRefPubMedGoogle Scholar
  34. Fong S, Itahana Y, Sumida T, Singh J, Coppe JP, Liu Y, Richards PC, Bennington JL, Lee NM, Debs RJ, Desprez PY (2003) Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A 100(23):13543–13548.  https://doi.org/10.1073/pnas.2230238100 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Galland F, Lacroix L, Saulnier P, Dessen P, Meduri G, Bernier M, Gaillard S, Guibourdenche J, Fournier T, Evain-Brion D, Bidart JM, Chanson P (2010) Differential gene expression profiles of invasive and non-invasive non-functioning pituitary adenomas based on microarray analysis. Endocr Relat Cancer 17(2):361–371.  https://doi.org/10.1677/ERC-10-0018 CrossRefPubMedGoogle Scholar
  36. Glöckner SC, Dhir M, Yi JM et al (2009) Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. Cancer Res 69(11):4691–4699.  https://doi.org/10.1158/0008-5472.CAN-08-0142 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gong J, Zhao Y, Abdel-Fattah R, Amos S, Xiao A, Lopes MBS, Hussaini IM, Laws ER (2008) Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas. Pituitary. 11(1):37–48.  https://doi.org/10.1007/s11102-007-0066-2 CrossRefPubMedGoogle Scholar
  38. Greco SA, Chia J, Inglis KJ, Cozzi SJ, Ramsnes I, Buttenshaw RL, Spring KJ, Boyle GM, Worthley DL, Leggett BA, Whitehall VLJ (2010) Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation. BMC Cancer 10:494.  https://doi.org/10.1186/1471-2407-10-494 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Greenman Y, Melmed S (1996) Diagnosis and management of nonfunctioning pituitary tumors. Annu Rev Med 47:95–106.  https://doi.org/10.1146/annurev.med.47.1.95 CrossRefPubMedGoogle Scholar
  40. Harris MA, Clark J, Ireland A et al (2004) The gene ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258–D261.  https://doi.org/10.1093/nar/gkh036 CrossRefPubMedGoogle Scholar
  41. Hasegawa S, Eguchi H, Nagano H, Konno M, Tomimaru Y, Wada H, Hama N, Kawamoto K, Kobayashi S, Nishida N, Koseki J, Nishimura T, Gotoh N, Ohno S, Yabuta N, Nojima H, Mori M, Doki Y, Ishii H (2014) MicroRNA-1246 expression associated with CCNG2-mediated chemoresistance and stemness in pancreatic cancer. Br J Cancer 111(8):1572–1580.  https://doi.org/10.1038/bjc.2014.454 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR, Cao X, Singla N, Montie JE, Varambally S, Mehra R, Chinnaiyan AM (2008) Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res 68(1):73–80.  https://doi.org/10.1158/0008-5472.CAN-07-5352 CrossRefPubMedGoogle Scholar
  43. Heo M, Maslov S, Shakhnovich E (2011) Topology of protein interaction network shapes protein abundances and strengths of their functional and nonspecific interactions. Proc Natl Acad Sci U S A 108(10):4258–4263.  https://doi.org/10.1073/pnas.1009392108 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hermani A, Hess J, De Servi B et al (2005) Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 11(14):5146–5152.  https://doi.org/10.1158/1078-0432.CCR-05-0352 CrossRefGoogle Scholar
  45. Hibberts NA, Simpson DJ, Bicknell JE et al (1999) Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res 5(8):2133–2139PubMedGoogle Scholar
  46. Hou J, Wang L (2012) FKBP5 as a selection biomarker for gemcitabine and Akt inhibitors in treatment of pancreatic cancer. PLoS One 7(5):e36252.  https://doi.org/10.1371/journal.pone.0036252 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hsu CW, Juan HF, Huang HC (2008) Characterization of microRNA-regulated protein-protein interaction network. Proteomics. 8(10):1975–1979.  https://doi.org/10.1002/pmic.200701004 CrossRefPubMedGoogle Scholar
  48. Hurley PJ, Marchionni L, Simons BW, Ross AE, Peskoe SB, Miller RM, Erho N, Vergara IA, Ghadessi M, Huang Z, Gurel B, Park BH, Davicioni E, Jenkins RB, Platz EA, Berman DM, Schaeffer EM (2012) Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is down regulated in aggressive prostate cancers and is prognostic for poor clinical outcome. Proc Natl Acad Sci U S A 109(37):14977–14982.  https://doi.org/10.1073/pnas.1203525109 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hussaini IM, Trotter C, Zhao Y, Abdel-Fattah R, Amos S, Xiao A, Agi CU, Redpath GT, Fang Z, Leung GKK, Lopes MBS, Laws ER Jr (2007) Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am J Pathol 170(1):356–365.  https://doi.org/10.2353/ajpath.2007.060736 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jewison T, Su Y, Disfany FM, Liang Y, Knox C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D, Djoumbou Y, Liu Y, Deng L, Guo AC, Han B, Pon A, Wilson M, Rafatnia S, Liu P, Wishart DS (2014) SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res 42(Database issue):D478–D484.  https://doi.org/10.1093/nar/gkt1067 CrossRefPubMedGoogle Scholar
  51. Jiang Z, Gui S, Zhang Y (2011) Analysis of differential gene expression using fiber-optic bead array and pathway analyses in pituitary adenomas. J Clin Neurosci 18(10):1386–1391.  https://doi.org/10.1016/j.jocn.2010.10.021 CrossRefPubMedGoogle Scholar
  52. Junnila S, Kokkola A, Mizuguchi T, Hirata K, Karjalainen-Lindsberg ML, Puolakkainen P, Monni O (2010) Gene expression analysis identifies over-expression of CXCL1, SPARC, SPP1, and SULF1 in gastric cancer. Genes Chromosomes Cancer 49(1):28–39.  https://doi.org/10.1002/gcc.20715 CrossRefPubMedGoogle Scholar
  53. Kaimal V, Bardes EE, Tabar SC, Jegga AG, Aronow BJ (2010) ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res 38(Web Server):W96–W102.  https://doi.org/10.1093/nar/gkq418 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2018) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595.  https://doi.org/10.1093/nar/gky962 CrossRefPubMedCentralGoogle Scholar
  55. Keane MP, Belperio JA, Xue YY, Burdick MD, Strieter RM (2004) Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol 172(5):2853–2860CrossRefPubMedGoogle Scholar
  56. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database--2009 update. Nucleic Acids Res 37(Database):D767–D772.  https://doi.org/10.1093/nar/gkn892 CrossRefPubMedGoogle Scholar
  57. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46(D1):D1284.  https://doi.org/10.1093/nar/gkx1188 CrossRefPubMedGoogle Scholar
  58. Kirikoshi H, Sekihara H, Katoh M (2001) Up-regulation of WNT10A by tumor necrosis factor alpha and Helicobacter pylori in gastric cancer. Int J Oncol 19(3):533–536PubMedGoogle Scholar
  59. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RGAB, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 100(20):11606–11611.  https://doi.org/10.1073/pnas.1933744100 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Komura K, Jeong SH, Hinohara K, Qu F, Wang X, Hiraki M, Azuma H, Lee GSM, Kantoff PW, Sweeney CJ (2016) Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proc Natl Acad Sci U S A 113(22):6259–6264.  https://doi.org/10.1073/pnas.1600420113 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kremer P, Forsting M, Ranaei G, Wüster C, Hamer J, Sartor K, Kunze S (2002) Magnetic resonance imaging after transsphenoidal surgery of clinically non-functional pituitary macroadenomas and its impact on detecting residual adenoma. Acta Neurochir 144(5):433–443.  https://doi.org/10.1007/s007010200064 CrossRefPubMedGoogle Scholar
  62. Kubo Y, Kikuchi Y, Mitani H, Kobayashi E, Kobayashi T, Hino O (1995) Allelic loss at the tuberous sclerosis (Tsc2) gene locus in spontaneous uterine leiomyosarcomas and pituitary adenomas in the Eker rat model. Jpn J Cancer Res 86(9):828–832CrossRefPubMedPubMedCentralGoogle Scholar
  63. la Peña S, Sampieri CL, Ochoa-Lara M et al (2014) Expression of the matrix metalloproteases 2, 14, 24, and 25 and tissue inhibitor 3 as potential molecular markers in advanced human gastric cancer. Dis Markers 2014:285906.  https://doi.org/10.1155/2014/285906 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Larysz D, Zebracka-Gala J, Rudnik A et al (2012) Expression of genes FOLR1, BAG1 and LAPTM4B in functioning and non-functioning pituitary adenomas. Folia Neuropathol 50(3):277–286CrossRefPubMedGoogle Scholar
  65. Lekva T, Berg JP, Lyle R et al (2015) Alternative splicing of placental lactogen (CSH2) in somatotroph pituitary adenomas. Neuro Endocrinol Lett 36(2):136–142PubMedGoogle Scholar
  66. Li W, Zhang Y, Zhang M, Huang G, Zhang Q (2014) Wnt4 is overexpressed in human pituitary adenomas and is associated with tumor invasion. J Clin Neurosci 21(1):137–141.  https://doi.org/10.1016/j.jocn.2013.04.034 CrossRefPubMedGoogle Scholar
  67. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(Database issue):D857–D861.  https://doi.org/10.1093/nar/gkr930 CrossRefPubMedGoogle Scholar
  68. Lignelid H, Collins VP, Jacobsson B et al (1997) Cystatin C and transthyretin expression in normal and neoplastic tissues of the human brain and pituitary. Acta Neuropathol 93(5):494–500.  https://doi.org/10.1007/s004010050644 CrossRefPubMedGoogle Scholar
  69. Lim W, Kim HS, Jeong W, Ahn SE, Kim J, Kim YB, Kim MA, Kim MK, Chung HH, Song YS, Bazer FW, Han JY, Song G (2012) SERPINB3 in the chicken model of ovarian cancer: a prognostic factor for platinum resistance and survival in patients with epithelial ovarian cancer. PLoS One 7(11):e49869.  https://doi.org/10.1371/journal.pone.0049869 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lin F, Wang X, Jie Z, Hong X, Li X, Wang M, Yu Y (2011) Inhibitory effects of miR-146b-5p on cell migration and invasion of pancreatic cancer by targeting MMP16. J Huazhong Univ Sci Technolog Med Sci 31(4):509–514.  https://doi.org/10.1007/s11596-011-0481-5 CrossRefPubMedGoogle Scholar
  71. Lo R, Burgoon L, Macpherson L et al (2010) Estrogen receptor-dependent regulation of CYP2B6 in human breast cancer cells. Biochim Biophys Acta 1799(5–6):469–479.  https://doi.org/10.1016/j.bbagrm.2010.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Lose F, Batra J, O’Mara T, Fahey P, Marquart L, Eeles RA, Easton DF, al Olama AA, Kote-Jarai Z, Guy M, Muir K, Lophatananon A, Rahman AA, Neal DE, Hamdy FC, Donovan JL, Chambers S, Gardiner RA, Aitken JF, Yaxley J, Alexander K, Clements JA, Spurdle AB, Kedda MA, Australian Prostate Cancer BioResource (2013) Common variation in kallikrein genes KLK5, KLK6, KLK12, and KLK13 and risk of prostate cancer and tumor aggressiveness. Urol Oncol 31(5):635–643.  https://doi.org/10.1016/j.urolonc.2011.05.011 CrossRefPubMedGoogle Scholar
  73. Lu R, Gao H, Wang H et al (2013) Overexpression of the Notch3 receptor and its ligand Jagged1 in human clinically non-functioning pituitary adenomas. Oncol Lett 5(3):845–851.  https://doi.org/10.3892/ol.2013.1113 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333(2):213–221.  https://doi.org/10.1016/j.canlet.2013.01.033 CrossRefPubMedGoogle Scholar
  75. Makino S, Oda S, Saka T et al (2001) A case of aldosterone-producing adrenocortical adenoma associated with preclinical Cushing’s syndrome and hypersecretion of parathyroid hormone. Endocr J 48(1):103–111CrossRefPubMedGoogle Scholar
  76. Makinoshima H, Ishii G, Kojima M, Fujii S, Higuchi Y, Kuwata T, Ochiai A (2012) PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma. BMC Cancer 12:537.  https://doi.org/10.1186/1471-2407-12-537 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mastronardi L, Guiducci A, Puzzilli F (2001) Lack of correlation between Ki-67 labelling index and tumor size of anterior pituitary adenomas. BMC Cancer 1:12CrossRefPubMedPubMedCentralGoogle Scholar
  78. McCabe CJ, Khaira JS, Boelaert K et al (2003) Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin Endocrinol 58(2):141–150CrossRefGoogle Scholar
  79. Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, Chinnaiyan AM, Kleer CG (2005) Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res 65(24):11259–11264.  https://doi.org/10.1158/0008-5472.CAN-05-2495 CrossRefPubMedGoogle Scholar
  80. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45(D1):D183–D189.  https://doi.org/10.1093/nar/gkw1138 CrossRefPubMedGoogle Scholar
  81. Miao Z, Miao Y, Lin Y, Lu X (2012) Overexpression of the Notch3 receptor in non-functioning pituitary tumours. J Clin Neurosci 19(1):107–110.  https://doi.org/10.1016/j.jocn.2011.07.029 CrossRefPubMedGoogle Scholar
  82. Miller GJ, Stapleton GE, Hedlund TE, Moffat KA (1995) Vitamin D receptor expression, 24-hydroxylase activity, and inhibition of growth by 1alpha, 25-dihydroxyvitamin D3 in seven human prostatic carcinoma cell lines. Clin Cancer Res 1(9):997–1003PubMedGoogle Scholar
  83. Mishima C, Kagara N, Matsui S, Tanei T, Naoi Y, Shimoda M, Shimomura A, Shimazu K, Kim SJ, Noguchi S (2015) Promoter methylation of TRIM9 as a marker for detection of circulating tumor DNA in breast cancer patients. Springerplus. 4:635.  https://doi.org/10.1186/s40064-015-1423-7 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Modlin IM, Gustafsson BI, Moss SF, Pavel M, Tsolakis AV, Kidd M (2010) Chromogranin A--biological function and clinical utility in neuro endocrine tumor disease. Ann Surg Oncol 17(9):2427–2443.  https://doi.org/10.1245/s10434-010-1006-3 CrossRefPubMedGoogle Scholar
  85. Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65(22):10214–10222.  https://doi.org/10.1158/0008-5472.CAN-05-0884 CrossRefPubMedGoogle Scholar
  86. Nakamura R, Oyama T, Tajiri R, Mizokami A, Namiki M, Nakamoto M, Ooi A (2015) Expression and regulatory effects on cancer cell behavior of NELL1 and NELL2 in human renal cell carcinoma. Cancer Sci 106(5):656–664.  https://doi.org/10.1111/cas.12649 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Nakashima H, Natsugoe S, Ishigami S, Okumura H, Matsumoto M, Hokita S, Aikou T (2006) Clinical significance of nuclear expression of spleen tyrosine kinase (Syk) in gastric cancer. Cancer Lett 236(1):89–94.  https://doi.org/10.1016/j.canlet.2005.05.022 CrossRefPubMedGoogle Scholar
  88. Narayan G, Goparaju C, Arias-Pulido H, Kaufmann AM, Schneider A, Dürst M, Mansukhani M, Pothuri B, Murty VV (2006) Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol Cancer 5:16.  https://doi.org/10.1186/1476-4598-5-16 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Nelson M, Millican-Slater R, Forrest LC, Brackenbury WJ (2014) The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis. Int J Cancer 135(10):2338–2351.  https://doi.org/10.1002/ijc.28890 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Ning K, Ng HK, Srihari S, Leong H, Nesvizhskii AI (2010) Examination of the relationship between essential genes in PPI network and hub proteins in reverse nearest neighbor topology. BMC Bioinformatics. 11:505.  https://doi.org/10.1186/1471-2105-11-505 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Nobels FR, Kwekkeboom DJ, Coopmans W et al (1997) Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones. J Clin Endocrinol Metab 82(8):2622–2628.  https://doi.org/10.1210/jcem.82.8.4145 CrossRefPubMedGoogle Scholar
  92. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H (2014) The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(Database issue):D358–D363.  https://doi.org/10.1093/nar/gkt1115 CrossRefPubMedGoogle Scholar
  93. Otani T, Ikeda S, Lwin H, Arai T, Muramatsu M, Sawabe M (2011) Polymorphisms of the formylpeptide receptor gene (FPR1) and susceptibility to stomach cancer in 1531 consecutive autopsy cases. Biochem Biophys Res Commun 405(3):356–361.  https://doi.org/10.1016/j.bbrc.2010.12 CrossRefPubMedGoogle Scholar
  94. Ozer E, Canda MS, Ulukus C, Guray M, Erbayraktar S (2003) Expression of Bcl-2, Bax and p53 proteins in pituitary adenomas: an immunohistochemical study. Tumori. 89(1):54–59CrossRefPubMedGoogle Scholar
  95. Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes HW, Ruepp A, Frishman D (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics. 21(6):832–834.  https://doi.org/10.1093/bioinformatics/bti115 CrossRefPubMedGoogle Scholar
  96. Park P, Chandler WF, Barkan AL, Orrego JJ, Cowan JA, Griffith KA, Tsien C (2004) The role of radiation therapy after surgical resection of nonfunctional pituitary macroadenomas. Neurosurgery. 55(1):100–106CrossRefPubMedGoogle Scholar
  97. Park JH, Lin ML, Nishidate T, Nakamura Y, Katagiri T (2006) PDZ-binding kinase/T-LAK cell-originated protein kinase, a putative cancer/testis antigen with an oncogenic activity in breast cancer. Cancer Res 66(18):9186–9195.  https://doi.org/10.1158/0008-5472.CAN-06-1601 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Petri V, Jayaraman P, Tutaj M, Hayman G, Smith JR, de Pons J, Laulederkind SJF, Lowry TF, Nigam R, Wang SJ, Shimoyama M, Dwinell MR, Munzenmaier DH, Worthey EA, Jacob HJ (2014) The pathway ontology - updates and applications. J Biomed Semantics 5(1):7.  https://doi.org/10.1186/2041-1480-5-7 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Qian S, Yang Y, Li N, Cheng T, Wang X, Liu J, Li X, Desiderio DM, Zhan X (2018) Prolactin variants in human pituitaries and pituitary adenomas identified with two-dimensional gel electrophoresis and mass spectrometry. Front Endocrinol (Lausanne) 9:468.  https://doi.org/10.3389/fendo.2018.00468 CrossRefGoogle Scholar
  100. Rinaldi S, Cleveland R, Norat T, Biessy C, Rohrmann S, Linseisen J, Boeing H, Pischon T, Panico S, Agnoli C, Palli D, Tumino R, Vineis P, Peeters PHM, van Gils CH, Bueno-de-Mesquita BH, Vrieling A, Allen NE, Roddam A, Bingham S, Khaw KT, Manjer J, Borgquist S, Dumeaux V, Torhild Gram I, Lund E, Trichopoulou A, Makrygiannis G, Benetou V, Molina E, Donate Suárez I, Barricarte Gurrea A, Gonzalez CA, Tormo MJ, Altzibar JM, Olsen A, Tjonneland A, Grønbaek H, Overvad K, Clavel-Chapelon F, Boutron-Ruault MC, Morois S, Slimani N, Boffetta P, Jenab M, Riboli E, Kaaks R (2010) Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer 126(7):1702–1715.  https://doi.org/10.1002/ijc.24927 CrossRefPubMedGoogle Scholar
  101. Ripka S, Riedel J, Neesse A, Griesmann H, Buchholz M, Ellenrieder V, Moeller F, Bartht P, Gress TM, Michl P (2010) Glutamate receptor GRIA3--target of CUX1 and mediator of tumor progression in pancreatic cancer. Neoplasia. 12(8):659–667CrossRefPubMedPubMedCentralGoogle Scholar
  102. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47.  https://doi.org/10.1093/nar/gkv007 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Salgado LR, Machado MC, Cukiert A, Liberman B, Kanamura CT, Alves VAF (2006) Cushing’s disease arising from a clinically nonfunctioning pituitary adenoma. Endocr Pathol 17(2):191–199CrossRefPubMedGoogle Scholar
  104. Salwinski L, Miller CS, Smith AJ et al (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Database issue):D449–D451.  https://doi.org/10.1093/nar/gkh086 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Sassa M, Hayashi Y, Watanabe R, Kikumori T, Imai T, Kurebayashi J, Kiuchi T, Murata Y (2011) Aberrant promoter methylation in overexpression of CITED1 in papillary thyroid cancer. Thyroid. 21(5):511–517.  https://doi.org/10.1089/thy.2010.0295 CrossRefPubMedGoogle Scholar
  106. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the pathway interaction database. Nucleic Acids Res 37(Database issue):D674–D679.  https://doi.org/10.1093/nar/gkn653 CrossRefPubMedGoogle Scholar
  107. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504.  https://doi.org/10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Sheng Q, Liu X, Fleming E, Yuan K, Piao H, Chen J, Moustafa Z, Thomas RK, Greulich H, Schinzel A, Zaghlul S, Batt D, Ettenberg S, Meyerson M, Schoeberl B, Kung AL, Hahn WC, Drapkin R, Livingston DM, Liu JF (2010) An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell 17(3):298–310.  https://doi.org/10.1016/j.ccr.2009.12.047 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Shi Z, Zhang B (2011) Fast network centrality analysis using GPUs. BMC Bioinformatics 12:149.  https://doi.org/10.1186/1471-2105-12-149 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Simpson DJ, Bicknell JE, McNicol AM et al (1999) Hypermethylation of the p16/CDKN2A/MTSI gene and loss of protein expression is associated with nonfunctional pituitary adenomas but not somatotrophinomas. Genes Chromosom Cancer. 24(4):328–336CrossRefPubMedGoogle Scholar
  111. Simpson DJ, Hibberts NA, McNicol AM et al (2000) Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res 60(5):1211–1216PubMedPubMedCentralGoogle Scholar
  112. Stacey SN, Sulem P, Zanon C, Gudjonsson SA, Thorleifsson G, Helgason A, Jonasdottir A, Besenbacher S, Kostic JP, Fackenthal JD, Huo D, Adebamowo C, Ogundiran T, Olson JE, Fredericksen ZS, Wang X, Look MP, Sieuwerts AM, Martens JWM, Pajares I, Garcia-Prats MD, Ramon-Cajal JM, de Juan A, Panadero A, Ortega E, Aben KKH, Vermeulen SH, Asadzadeh F, van Engelenburg KCA, Margolin S, Shen CY, Wu PE, Försti A, Lenner P, Henriksson R, Johansson R, Enquist K, Hallmans G, Jonsson T, Sigurdsson H, Alexiusdottir K, Gudmundsson J, Sigurdsson A, Frigge ML, Gudmundsson L, Kristjansson K, Halldorsson BV, Styrkarsdottir U, Gulcher JR, Hemminki K, Lindblom A, Kiemeney LA, Mayordomo JI, Foekens JA, Couch FJ, Olopade OI, Gudbjartsson DF, Thorsteinsdottir U, Rafnar T, Johannsson OT, Stefansson K (2010) Ancestry-shift refinement mapping of the C6orf97-ESR1 breast cancer susceptibility locus. PLoS Genet 6(7):e1001029.  https://doi.org/10.1371/journal.pgen.1001029 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Stadlmann S, Gueth U, Baumhoer D, Moch H, Terracciano L, Singer G (2007) Glypican-3 expression in primary and recurrent ovarian carcinomas. Int J Gynecol Pathol 26(3):341–344.  https://doi.org/10.1097/pgp.0b013e31802d692c CrossRefPubMedGoogle Scholar
  114. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550.  https://doi.org/10.1073/pnas.0506580102 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sun C, Fukui H, Hara K, Zhang X, Kitayama Y, Eda H, Tomita T, Oshima T, Kikuchi S, Watari J, Sasako M, Miwa H (2015) FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells. BMC Cancer 15:333.  https://doi.org/10.1186/s12885-015-1353-3 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Taboada GF, Luque RM, Bastos W, Guimarães RFC, Marcondes JB, Chimelli LMC, Fontes R, Mata PJP, Filho PN, Carvalho DP, Kineman RD, Gadelha M̂R (2007) Quantitative analysis of somatostatin receptor subtype (SSTR1-5) gene expression levels in somatotropinomas and non-functioning pituitary adenomas. Eur J Endocrinol 156(1):65–74.  https://doi.org/10.1530/eje.1.02313 CrossRefPubMedGoogle Scholar
  117. Takeda M, Otsuka F, Suzuki J, Kishida M, Ogura T, Tamiya T, Makino H (2003) Involvement of activin/BMP system in development of human pituitary gonadotropinomas and nonfunctioning adenomas. Biochem Biophys Res Commun 306(4):812–818CrossRefPubMedGoogle Scholar
  118. Tampanaru-Sarmesiu A, Stefaneanu L, Thapar K, Kontogeorgos G, Sumi T, Kovacs K (1998) Transferrin and transferrin receptor in human hypophysis and pituitary adenomas. Am J Pathol 152(2):413–422PubMedPubMedCentralGoogle Scholar
  119. Tani Y, Sugiyama T, Izumiyama H, Yoshimoto T, Yamada S, Hirata Y (2011) Differential gene expression profiles of POMC-related enzymes, transcription factors and receptors between non-pituitary and pituitary ACTH-secreting tumors. Endocr J 58(4):297–303CrossRefPubMedGoogle Scholar
  120. Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER Jr (1996) p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery. 38(4):765–770CrossRefPubMedGoogle Scholar
  121. Thierolf M, Hagmann ML, Pfeffer M, Berntenis N, Wild N, Roeßler M, Palme S, Karl J, Bodenmüller H, Rüschoff J, Rossol S, Rohr G, Rösch W, Friess H, Eickhoff A, Jauch KW, Langen H, Zolg W, Tacke M (2008) Towards a comprehensive proteome of normal and malignant human colon tissue by 2-D-LC-ESI-MS and 2-DE proteomics and identification of S100A12 as potential cancer biomarker. Proteomics Clin Appl 2(1):11–22.  https://doi.org/10.1002/prca.200780046 CrossRefPubMedGoogle Scholar
  122. Tofrizal A, Fujiwara K, Azuma M, Kikuchi M, Jindatip D, Yashiro T, Yamada S (2017) Tissue inhibitors of metalloproteinase-expressing cells in human anterior pituitary and pituitary adenoma. Med Mol Morphol 50(3):145–154.  https://doi.org/10.1007/s00795-017-0155-x CrossRefPubMedGoogle Scholar
  123. Uno K, Azuma T, Nakajima M, Yasuda K, Hayakumo T, Mukai H, Sakai T, Kawai K (2000) Clinical significance of cathepsin E in pancreatic juice in the diagnosis of pancreatic ductal adenocarcinoma. J Gastroenterol Hepatol 15(11):1333–1338PubMedGoogle Scholar
  124. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Fevgas A, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 43(Database issue):D153–D159.  https://doi.org/10.1093/nar/gku1215 CrossRefPubMedGoogle Scholar
  125. Wen J, Nikitakis NG, Chaisuparat R, Greenwell-Wild T, Gliozzi M, Jin W, Adli A, Moutsopoulos N, Wu T, Warburton G, Wahl SM (2011) Secretory leukocyte protease inhibitor (SLPI) expression and tumor invasion in oral squamous cell carcinoma. Am J Pathol 178(6):2866–2878.  https://doi.org/10.1016/j.ajpath.2011.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Whitcomb BP, Mutch DG, Herzog TJ et al (2003) Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res 9(6):2277–2287PubMedGoogle Scholar
  127. White JD, Hewett PW, Kosuge D et al (2002) Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res 62(6):1669–1675PubMedGoogle Scholar
  128. Wu YH, Chang TH, Huang YF, Huang HD, Chou CY (2014) COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene. 33(26):3432–3440.  https://doi.org/10.1038/onc.2013.307 CrossRefPubMedGoogle Scholar
  129. Wu W, Huang B, Yan Y, Zhong ZQ (2018) Exploration of gene functions for esophageal squamous cell carcinoma using network-based guilt by association principle. Braz J Med Biol Res 51(6):e6801.  https://doi.org/10.1590/1414-431x20186801 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Xia J, Benner MJ, Hancock RE et al (2014) NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res 42(Web Server issue):W167–W174.  https://doi.org/10.1093/nar/gku443 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Xie Y, Wolff DW, Wei T, Wang B, Deng C, Kirui JK, Jiang H, Qin J, Abel PW, Tu Y (2009) Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Cancer Res 69(14):5743–5751.  https://doi.org/10.1158/0008-5472.CAN-08-3564 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Xu XF, Guo CY, Liu J et al (2009) Gli1 maintains cell survival by up-regulating IGFBP6 and Bcl-2 through promoter regions in parallel manner in pancreatic cancer cells. J Carcinog 8:13.  https://doi.org/10.4103/1477-3163.55429 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Yavropoulou MP, Maladaki A, Yovos JG (2015) The role of notch and hedgehog signaling pathways in pituitary development and pathogenesis of pituitary adenomas. Hormones (Athens) 14(1):5–18CrossRefGoogle Scholar
  134. Ye GD, Sun GB, Jiao P, Chen C, Liu QF, Huang XL, Zhang R, Cai WY, Li SN, Wu JF, Liu YJ, Wu RS, Xie YY, Chan EC, Liou YC, Li BA (2016) OVOL2, an inhibitor of WNT signaling, reduces invasive activities of human and mouse cancer cells and is down-regulated in human colorectal tumors. Gastroenterology. 150(3):659–671.e16.  https://doi.org/10.1053/j.gastro.2015.11.041 CrossRefPubMedGoogle Scholar
  135. Ye M, Wei T, Wang Q, Sun Y, Tang R, Guo L, Zhu W (2017) TSPAN12 promotes chemoresistance and proliferation of SCLC under the regulation of miR-495. Biochem Biophys Res Commun 486(2):349–356.  https://doi.org/10.1016/j.bbrc.2017.03.044 CrossRefPubMedGoogle Scholar
  136. Younes M, Wu Z, Dupouy S, Lupo AM, Mourra N, Takahashi T, Flejou JF, Trédaniel J, Régnard JF, Damotte D, Alifano M, Forgez P (2014) Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib. Oncotarget. 5(18):8252–8269.  https://doi.org/10.18632/oncotarget.1633 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Zaki N, Efimov D, Berengueres J et al (2013) Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics. 14:163.  https://doi.org/10.1186/1471-2105-14-163 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Żebracka-Gala J, Rudnik A, Hasse-Lazar K, Larysz D, Jarząb M, Krajewska J, Bażowski P, Jarząb B (2016) Molecular classification of pituitary adenomas: in search for criteria useful for high-throughput studies. Endokrynol Pol 67(2):148–156.  https://doi.org/10.5603/EP.a2016.0024 CrossRefPubMedGoogle Scholar
  139. Zhan X, Desiderio DM (2010a) Signaling pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genet 3:13.  https://doi.org/10.1186/1755-8794-3-13 CrossRefGoogle Scholar
  140. Zhan X, Desiderio DM (2010b) The use of variations in proteomes to predict, prevent, and personalize treatment for clinically nonfunctional pituitary adenomas. EPMA J 1(3):439–459.  https://doi.org/10.1007/s13167-010-0028-z CrossRefPubMedPubMedCentralGoogle Scholar
  141. Zhan X, Evans CO, Oyesiku NM, Desiderio DM (2003) Proteomics and transcriptomics analyses of secretagogin down-regulation in human non-functional pituitary adenomas. Pituitary. 6(4):189–202CrossRefPubMedGoogle Scholar
  142. Zhan Q, Huang RF, Liang XH, Ge MX, Jiang JW, Lin H, Zhou XL (2014) FRAS1 knockdown reduces A549 cells migration and invasion through down regulation of FAK signaling. Int J Clin Exp Med 7(7):1692–1697PubMedPubMedCentralGoogle Scholar
  143. Zhang W, Gordon M, Schultheis AM, Yang DY, Nagashima F, Azuma M, Chang HM, Borucka E, Lurje G, Sherrod AE, Iqbal S, Groshen S, Lenz HJ (2007) FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 25(24):3712–3718.  https://doi.org/10.1200/JCO.2006.08.8021 CrossRefGoogle Scholar
  144. Zhang HY, Jin L, Stilling GA, Ruebel KH, Coonse K, Tanizaki Y, Raz A, Lloyd RV (2009) RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors. Endocrine. 35(1):101–111.  https://doi.org/10.1007/s12020-008-9129-z CrossRefPubMedGoogle Scholar
  145. Zhang H, Li S, Yang X, Qiao B, Zhang Z, Xu Y (2016) miR-539 inhibits prostate cancer progression by directly targeting SPAG5. J Exp Clin Cancer Res 35:60.  https://doi.org/10.1186/s13046-016-0337-8 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Zhou F, Drabsch Y, Dekker TJ et al (2014) Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signalling. Nat Commun 5:3388.  https://doi.org/10.1038/ncomms4388 CrossRefPubMedGoogle Scholar
  147. Zhu X, Li Y, Shen H, Li H, Long L, Hui L, Xu W (2013) miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett 587(1):73–81.  https://doi.org/10.1016/j.febslet.2012.11.004 CrossRefPubMedGoogle Scholar
  148. Zhu YP, Wan FN, Shen YJ, Wang HK, Zhang GM, Ye DW (2015) Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth. Oncotarget. 6(16):14488–14496.  https://doi.org/10.18632/oncotarget.3697 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zhuang G, Song W, Amato K, Hwang Y, Lee K, Boothby M, Ye F, Guo Y, Shyr Y, Lin L, Carbone DP, Brantley-Sieders DM, Chen J (2012) Effects of cancer-associated EPHA3 mutations on lung cancer. J Natl Cancer Inst 104(15):1182–1197.  https://doi.org/10.1093/jnci/djs297 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Endocrine and Diabetes Care CenterHubliIndia
  2. 2.Department of PharmaceuticsSET’S College of PharmacyDharwadIndia
  3. 3.Biostatistics and BioinformaticsDharwadIndia

Personalised recommendations