Journal of Molecular Neuroscience

, Volume 67, Issue 2, pp 295–304 | Cite as

Network Profiling of Brain-Expressed X-Chromosomal MicroRNA Genes Implicates Shared Key MicroRNAs in Intellectual Disability

  • Thainá Fernandez Gonçalves
  • Rafael Mina Piergiorge
  • Jussara Mendonça dos Santos
  • Jaqueline Gusmão
  • Márcia Mattos Gonçalves Pimentel
  • Cíntia Barros Santos-RebouçasEmail author


MicroRNAs are endogenous non-protein-coding RNA molecules that regulate post-transcriptional gene expression. The majority of human miRNAs are brain-expressed and chromosome X is enriched in miRNA genes. We analyzed the genomic regions of 12 brain-expressed pre-miRNAs located on chromosome X coding for 18 mature miRNAs, aiming to investigate the involvement of miRNA sequence variants on X-linked intellectual disability (XLID). Genomic DNA samples from 135 unrelated Brazilian males with intellectual disability, suggestive of X-linked inheritance, were amplified through polymerase chain reaction and sequenced by Sanger sequencing. Although no sequence variations have been identified, suggesting an intense selective pressure, further computational analysis evidenced that eight mature miRNAs (miR-221-3p/222-3p, miR-223-3p, miR-361-5p, miR-362-5p, miR-504-5p.1, miR-505-3p.1, and miR-505-3p.2) act as critical regulators of X-linked and autosomal ID genes in a fully connected network. Enrichment approaches identify transcription regulation, nervous system development, and regulation of cell proliferation as the main common biological processes among the target ID genes. Besides, a clustered chromosomal coverage of the imputed miRNAs target genes and related regulators was found on X chromosome. Considering the role of miRNAs as fine-tuning regulators of gene expression, a systematic analysis of miRNAs’ expression could uncover part of the genetic landscape subjacent to ID, being urgently necessary in patients with this condition, particularly XLID.


Intellectual disability MicroRNA Brain Chromosome X 



The authors thank the families who participated in this study for their kind cooperation.

Funding Information

This work was supported by funds from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES), and Centro de Produção da Universidade do Estado do Rio de Janeiro (CEPUERJ).

Compliance with Ethical Standards

The Institutional Ethics Committee has approved all the procedures and samples were obtained after signature of an informed consent by the guardians of each patient included in this study.

Conflict of Interests

The authors declare that they have no conflict of interest.

Supplementary material

12031_2018_1235_MOESM1_ESM.pdf (649 kb)
Supplementary Figure 1 Genomic sequences of the pre-miRNAs included in this study obtained from a patient. The miRNA-3p and -5p sequences are highlighted with a solid rectangle and with a dashed rectangle, respectively. (PDF 648 kb)
12031_2018_1235_MOESM2_ESM.png (483 kb)
Supplementary Figure 2 Molecular interaction network to common X-linked ID genes and miRNAs by Cytoscape 3.6.1. mir-221-3p/mir-222-3p have the same seed sequence and were considered together as a cluster. (PNG 483 kb)
12031_2018_1235_MOESM3_ESM.png (1.3 mb)
Supplementary Figure 3 Molecular interaction network to common autosomal ID genes and miRNAs found with Target Scan by Cytoscape 3.6.1. mir-221-3p/mir-222-3p have the same seed sequence and were considered together as a cluster. (PNG 1321 kb)
12031_2018_1235_MOESM4_ESM.png (1.4 mb)
Supplementary Figure 4 Enriched pathways for the three Gene Ontology (GO) categories (Biological Process, BP; Molecular Function, MF; Cellular Component, CC) by Enrichr (Chen et al. 2013; Kuleshov et al. 2016). Only results that presented adjusted p value < 0.01 and at least ten genes were represented. (PNG 1408 kb)
12031_2018_1235_MOESM5_ESM.png (823 kb)
Supplementary Figure 5 Biological Process (BP) terms (adjusted p value < 0.01 and at least ten genes) represented hierarchically with BLAST2GO (Conesa et al. 2005). (PNG 823 kb)
12031_2018_1235_MOESM6_ESM.png (7.1 mb)
Supplementary Figure 6 Ideograms representing the chromosomal localization of the filtered target genes associated with DI and their regulators (miRNAs and TFs) in the human genome obtained by Phenogram software. (PNG 7275 kb)
12031_2018_1235_Fig2_ESM.png (226 kb)
Supplementary Figure 7

Venn diagram representing the number of miRNAs target genes shared between analyzes performed with TargetScan and mirDIP databases. As mirDIP database does not apply the annotation ‘hsa-miR-505-3p.1’ and ‘hsa-miR-505-3p.2’, only hsa-miR-505-3p was recovered. (PNG 225 kb)

12031_2018_1235_MOESM7_ESM.tif (267 kb)
High Resolution Image (TIF 266 kb)
12031_2018_1235_MOESM8_ESM.pptx (54 kb)
Supplementary Figure 8 Individual chromosome length (base pairs), number of coding genes and number of miRNA genes in comparison to the whole human genome (%). (DOCX 18 kb) (PPTX 54 kb)
12031_2018_1235_MOESM9_ESM.docx (19 kb)
Supplementary Table 1 Sequence of primers (5′ to 3′) used for miRNA screening and their position on the X chromosome. (DOCX 18 kb)
12031_2018_1235_MOESM10_ESM.docx (26 kb)
Supplementary Table 2 Conservation of the X-chromosomal miRNAs expressed in cortex and cerebellum analyzed in this study among different species (data collected from TargetScan 7.1). (DOCX 26 kb)
12031_2018_1235_MOESM11_ESM.docx (28 kb)
Supplementary Table 3 Text mining results from all PubMed articles associated with the eight shared miRNAs through pubmed.mineR tool (Rani et al. 2015). Only the articles that presented the terms “microRNA”, “miR”, “expression”, “gene expression”, “target”, “inhibiting” or “regulation” were preserved in the study. The expressions containing “target” and the target genes names listed in these interactions were obtained. (DOCX 27 kb)
12031_2018_1235_MOESM12_ESM.docx (30 kb)
Supplementary Table 4 Summary of the variants previously found in the mature and seed sequences of the 18 selected brain-expressed X-chromosomal microRNA genes, as well as the number of diseases causally related to each miRNA. (DOCX 29 kb)


  1. American Psychiatric Association (2013) The diagnostic and statistical manual of mental disorders (DSM-5), 5th edn. American Psychiatric Publishing, Washington (DC) 992 ppGoogle Scholar
  2. Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in drosophila. Cell 124:191–205Google Scholar
  3. Barros Santos CB, Gonçalves Pimentel MM (2003) The influence of expanded unmethylated alleles for FRAXA/FRAXE loci in the intellectual performance among Brazilian mentally impaired males. Int J Mol Med 12:385–389Google Scholar
  4. Bentwich I, Avniel A, Karov Y, Gilad S, Barad O, Barzilai A et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–771Google Scholar
  5. Bian S, Sun T (2011) Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 44:359–373Google Scholar
  6. Borel C, Deutsch S, Letourneau A, Migliavacca E, Montgomery SB, Dimas AS, Vejnar CE, Attar H, Gagnebin M, Gehrig C, Falconnet E, Dupre Y, Dermitzakis ET, Antonarakis SE (2011) Identification of cis- and trans-regulatory variation modulating microRNA expression levels in human fibroblasts. Genome Res 21:68–73Google Scholar
  7. Brognara E, Fabbri E, Montagner G, Gasparello J, Manicardi A, Corradini R et al (2016) High levels of apoptosis are induced in human glioma cell lines by co-administration of peptide nucleic acids targeting miR-221 and miR-222. Int J Oncol 48:1029–1038Google Scholar
  8. Campos M Jr, Abdalla CB, Santos-Rebouças CB, dos Santos AV, Pestana CP, Domingues ML et al (2007) Low significance of MECP2 mutations as a cause of mental retardation in Brazilian males. Brain and Development 29:293–297Google Scholar
  9. Campos M Jr, Churchman SM, Santos-Rebouças CB, Ponchel F, Pimentel MM (2010) High frequency of nonrecurrent MECP2 duplications among Brazilian males with mental retardation. J Mol Neurosci 41:105–109Google Scholar
  10. Chen W, Jensen LR, Gécz J, Fryns JP, Moraine C, de Brouwer A et al (2007) Mutation screening of brain-expressed X-chromosomal miRNA genes in 464 patients with nonsyndromic X-linked mental retardation. Eur J Hum Genet 15:375–378Google Scholar
  11. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf 14:128Google Scholar
  12. Choi SY, Pang K, Kim JY, Ryu JR, Kang H, Liu Z, et al (2015) Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple neuropsychiatric disorders. Mol Brain 8:74.
  13. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676Google Scholar
  14. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Kähäri AK, Keenan S, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Overduin B, Parker A, Patricio M, Perry E, Pignatelli M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Aken BL, Birney E, Harrow J, Kinsella R, Muffato M, Ruffier M, Searle SMJ, Spudich G, Trevanion SJ, Yates A, Zerbino DR, Flicek P (2015) Ensembl 2015. Nucleic Acids Res 43:D662–D669Google Scholar
  15. de Brouwer AP, Yntema HG, Kleefstra T, Lugtenberg D, Oudakker AR, de Vries BB et al (2007) Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium. Hum Mutat 28:207–208Google Scholar
  16. De Pietri Tonelli D, Clovis YM, Huttner WB (2014) Detection and monitoring of microRNA expression in developing mouse brain and fixed brain cryosections. Methods Mol Biol 1092:31–42Google Scholar
  17. De Souza Gestinari-Duarte RS, Santos-Rebouças CB, Pimentel MM (2006) Mutational screening of ARX gene in Brazilian males with mental retardation of unknown etiology. J Hum Genet 51:737–740Google Scholar
  18. Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S, Jahn H (2015) MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer’s disease. PLoS One 10:e0126423Google Scholar
  19. Devanna P, van de Vorst M, Pfundt R, Gilissen C, Vernes SC (2018) Genome-wide investigation of an ID cohort reveals de novo 3'UTR variants affecting gene expression. Hum Genet 137:717–721.
  20. Ding SL, Wang JX, Jiao JQ, Tu X, Wang Q, Liu F, Li Q, Gao J, Zhou QY, Gu DF, Li PF (2013) A pre-microRNA-149 (miR-149) genetic variation affects miR-149 maturation and its ability to regulate the Puma protein in apoptosis. J Biol Chem 288:26865–26877Google Scholar
  21. Duan S, Mi S, Zhang W, Dolan ME (2009) Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biol 6:412–425Google Scholar
  22. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 11;65(3):373–84.Google Scholar
  23. Fénelon K, Mukai J, Xu B, Hsu PK, Drew LJ, Karayiorgou M et al (2011) Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci U S A 108:4447–4452Google Scholar
  24. Feng J, Sun G, Yan J, Noltner K, Li W, Buzin CH, Longmate J, Heston LL, Rossi J, Sommer SS (2009) Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One 4:e6121Google Scholar
  25. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J et al (2008) The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet Chapter 10:Unit 10.11Google Scholar
  26. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105Google Scholar
  27. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146Google Scholar
  28. Gonçalves TF, dos Santos JM, Gonçalves AP, Tassone F, Mendoza-Morales G, Ribeiro MG, Kahn E, Boy R, Gonçalves Pimentel MM, Santos-Rebouças CB (2016) Finding FMR1 mosaicism in fragile X syndrome. Expert Rev Mol Diagn 16:501–507Google Scholar
  29. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) MiRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158Google Scholar
  30. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105Google Scholar
  31. Grozeva D, Carss K, Spasic-Boskovic O, Tejada MI, Gecz J, Shaw M, Corbett M, Haan E, Thompson E, Friend K, Hussain Z, Hackett A, Field M, Renieri A, Stevenson R, Schwartz C, Floyd JAB, Bentham J, Cosgrove C, Keavney B, Bhattacharya S, Italian X-linked Mental Retardation Project, UK10K Consortium, GOLD Consortium, Hurles M, Raymond FL (2015) Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability. Hum Mutat 36:1197–1204Google Scholar
  32. Guan Y, Chen L, Bao Y, Pang C, Cui R, Li G, Liu J, Wang Y (2015) Downregulation of microRNA-504 is associated with poor prognosis in high-grade glioma. Int J Clin Exp Pathol 8:727–734Google Scholar
  33. Han M, Zheng Y (2013) Comprehensive analysis of single nucleotide polymorphisms in human MicroRNAs. PLoS One 8:e78028Google Scholar
  34. Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A 109:18962–18967.
  35. Harraz MM, Xu JC, Guiberson N, Dawson TM, Dawson VL (2014) MiR-223 regulates the differentiation of immature neurons. Mol Cell Ther 2:pii:18.
  36. Hohjoh H, Fukushima T (2007) Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene 391:39–44Google Scholar
  37. Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M et al (2010) De novo mutations of SETBP1 cause Schinzel–Giedion syndrome. Nat Genet 42:483–485Google Scholar
  38. Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer AP et al (2016) X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry 21:133–148Google Scholar
  39. Janky R, Verfaillie A, Imrichová H, Van de Sande B, Standaert L, Christiaens V et al (2014) iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 10:e1003731Google Scholar
  40. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30Google Scholar
  41. Kheirollahi M, Moodi M, Ashouri S, Nikpour P, Kazemi M (2017) Evaluation of miR-362 Expression in Astrocytoma of Human Brain Tumors. Adv Biomed Res 6:129Google Scholar
  42. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97Google Scholar
  43. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, de Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414Google Scholar
  44. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20Google Scholar
  45. Liang Y, Ridzon D, Wong L, Chen C (2007) Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8:166Google Scholar
  46. Lin SL (2015) microRNAs and fragile X syndrome. Adv Exp Med Biol 888:107–121Google Scholar
  47. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stähler C, Meese E, Keller A (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44:3865–3877Google Scholar
  48. Marcinkowska M, Szymanski M, Krzyzosiak WJ, Kozlowski P (2011) Copy number variation of microRNA genes in the human genome. BMC Genomics 12:183Google Scholar
  49. Mendes-Silva AP, Pereira KS, Tolentino-Araujo GT, Nicolau Ede S, Silva-Ferreira CM, Teixeira AL, Diniz BS (2016) Shared biologic pathways between Alzheimer disease and major depression: a systematic review of MicroRNA expression studies. Am J Geriatr Psychiatry 24:903–912Google Scholar
  50. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68Google Scholar
  51. Nguyen LS, Lepleux M, Makhlouf M, Martin C, Fregeac J, Siquier-Pernet K, et al (2016) Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Mol Autism. 7:1.
  52. Qiao Y, Badduke C, Mercier E, Lewis SM, Pavlidis P, Rajcan-Separovic E (2013) MiRNA and miRNA target genes in copy number variations occurring in individuals with intellectual disability. BMC Genomics 14:544Google Scholar
  53. Rani J, Shah AR, Ramachandran S (2015) Pubmed.mineR: an R package with text-mining algorithms to analyse PubMed abstracts. J Biosci 40:671–682Google Scholar
  54. Rodriguez A, Griffiths-Jones S, Ashrust JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910Google Scholar
  55. Ropers HH (2010) Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 11:161–187Google Scholar
  56. Santos-Rebouças CB, Pimentel MM (2007) New insights into X-linked mental retardation: from clinical to molecular approaches. In: Carson MI (ed) Focus on mental retardation research. Nova Science Publisher, New York, pp 153–184Google Scholar
  57. Santos-Rebouças CB, Pimentel MM (2010) MicroRNAs: macro challenges on understanding human biological functions and neurological diseases. Curr Mol Med 10:692–704Google Scholar
  58. Santos-Rebouças CB, de Almeida LG, Belet S, Dos Santos SR, Ribeiro MG, da Silva AF et al (2015) Novel microduplications at Xp11.22 including HUWE1: clinical and molecular insights into these genomic rearrangements associated with intellectual disability. J Hum Genet 60:207–211Google Scholar
  59. Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104:3300–3305Google Scholar
  60. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289Google Scholar
  61. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13Google Scholar
  62. Shao NY, Hu HY, Yan Z, Xu Y, Hu H, Menzel C, Li N, Chen W, Khaitovich P (2010) Comprehensive survey of human brain microRNA by deep sequencing. BMC Genomics 11:409Google Scholar
  63. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2010) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432Google Scholar
  64. Steinlin M (2008) Cerebellar disorders in childhood: cognitive problems. Cerebellum 7:607–610Google Scholar
  65. Stevenson RE, Schwartz CE (2009) X-linked intellectual disability: unique vulnerability of the male genome. Dev Disabil Res Rev 15:361–368Google Scholar
  66. Stevenson RE, Schwartz CE, Rogers RC (2012) Atlas of X-linked intellectual disability syndromes, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  67. Suarez-Kurtz G, Pena SD, Hutz MH (2012) Application of the F(ST) statistics to explore pharmacogenomic diversity in the Brazilian population. Pharmacogenomics 13:771–777Google Scholar
  68. Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, O'Meara S, Latimer C, Dicks E, Menzies A, Stephens P, Blow M, Greenman C, Xue Y, Tyler-Smith C, Thompson D, Gray K, Andrews J, Barthorpe S, Buck G, Cole J, Dunmore R, Jones D, Maddison M, Mironenko T, Turner R, Turrell K, Varian J, West S, Widaa S, Wray P, Teague J, Butler A, Jenkinson A, Jia M, Richardson D, Shepherd R, Wooster R, Tejada MI, Martinez F, Carvill G, Goliath R, de Brouwer APM, van Bokhoven H, van Esch H, Chelly J, Raynaud M, Ropers HH, Abidi FE, Srivastava AK, Cox J, Luo Y, Mallya U, Moon J, Parnau J, Mohammed S, Tolmie JL, Shoubridge C, Corbett M, Gardner A, Haan E, Rujirabanjerd S, Shaw M, Vandeleur L, Fullston T, Easton DF, Boyle J, Partington M, Hackett A, Field M, Skinner C, Stevenson RE, Bobrow M, Turner G, Schwartz CE, Gecz J, Raymond FL, Futreal PA, Stratton MR (2009) A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet 41:535–543Google Scholar
  69. Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R, Jurisica I (2018) mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res 46:D360–D370Google Scholar
  70. Vissers LE, Gilissen C, Veltman JA (2016) Genetic studies in intellectual disability and related disorders. Nat Rev Genet 17:9–18Google Scholar

Internet Resources

  1. BrainSpan Atlas of the Developing Human Brain (2018)
  2. Cytoscape 3.6.1
  3. dbSNP – Short Genetics Variation Database, build 151.
  4. Ensembl (GRCh38.p12)
  5. Greenwood Genetic Center (2018) X-Linked intellectual disability.
  6. KEGG Pathway Database, release 85.1
  7. miRBase Database, release 22 (2018)
  8. TargetScan, release 7.1
  9. UCSC Genome Browser (GRCh38/Hg38) Assembly

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Thainá Fernandez Gonçalves
    • 1
  • Rafael Mina Piergiorge
    • 2
  • Jussara Mendonça dos Santos
    • 1
  • Jaqueline Gusmão
    • 3
  • Márcia Mattos Gonçalves Pimentel
    • 1
  • Cíntia Barros Santos-Rebouças
    • 1
    Email author
  1. 1.Servgen, Department of Genetics, Institute of Biology Roberto Alcantara GomesState University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Functional Genomics and Bioinformatics Laboratory, FiocruzOswaldo Cruz InstituteRio de JaneiroBrazil
  3. 3.Laboratory of Fisheries Genetics and Conservation, Department of Genetics, Institute of Biology Roberto Alcantara GomesState University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations