Advertisement

Journal of Molecular Neuroscience

, Volume 67, Issue 2, pp 181–192 | Cite as

Amyloid Beta 1–42 Alters the Expression of miRNAs in Cortical Neurons

  • Erdinç Dursun
  • Esin Candaş
  • Selma Yılmazer
  • Duygu Gezen-AkEmail author
Article

Abstract

Recently, Aβ1–42 was demonstrated to have the potential to translocate into the nucleus and to be involved in the transcriptional regulation of certain neurodegeneration-related genes. This data raises the question of whether Aβ-induced neurodegeneration might include the expression of miRNAs. Thus, our aim in this study was to investigate the effects of Aβ1–42 on certain miRNAs which are related with vitamin D metabolism, neuronal differentiation, development, and memory. This question was investigated in primary cortical neurons that were treated with 10 μM Aβ and/or 10–8 M 1,25-dihydroxyvitamin D3 at different time points by expression analysis of let-7a-5p, miR-26b-5p, miR-27b-3p, miR-31a-5p, miR-125b-5p, and miR-192-5p with qRT-PCR. Our data indicate that amyloid pathology has effects on the expression of miRNAs. Furthermore, some of these miRNAs simultaneously regulate the proteins or the enzymes involved in neuronal metabolism. The experimental setup that we used and the data we acquired supply valuable information about the miRNAs that play a part in the Aβ pathology and suggested Aβ as a counterpart of vitamin D at the crossroads of neuronal differentiation, development, and memory.

Keywords

Alzheimer’s disease Aβ Vitamin D Vitamin D receptor (VDR) miRNA 

Notes

Author Contributions

Conceived and designed the experiments: DGA and ED. Performed the experiments: DGA, ED, EC. Analyzed the data: DGA and ED. Drafted and revised the manuscript: DGA, SY, and ED. All authors reviewed the manuscript.

Funding Information

The present work was supported by the Research Fund of Istanbul University, Project no: 21585, and by the Scientific and Technological Research Council of Turkey-TUBITAK, Project no. 214S585.

Compliance with Ethical Standards

The study was approved by the Animal Welfare and Ethics Committee of Istanbul University with the numbers 26.07.2012/101, and procedures that involved experimentation on animal subjects were carried out in accordance with both the guide of Istanbul University and with the National Research Council’s guide for the care and use of laboratory animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Language Editing

The English of the manuscript has been edited by ELSEVIER Language Editing Service with the Reference Number: LE222898.

References

  1. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB, Li Q, Weinstein SJ, Purdue M, Virtamo J, Horst R, Wheeler W, Chanock S, Hunter DJ, Hayes RB, Kraft P, Albanes D (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 19(13):2739–2745.  https://doi.org/10.1093/hmg/ddq155 Google Scholar
  2. Annweiler C, Dursun E, Feron F, Gezen-Ak D, Kalueff AV, Littlejohns T, Llewellyn DJ, Millet P, Scott T, Tucker KL, Yilmazer S, Beauchet O (2015) ‘Vitamin D and cognition in older adults’: updated international recommendations. J Intern Med 277(1):45–57.  https://doi.org/10.1111/joim.12279 Google Scholar
  3. Beecham GW, Martin ER, Li YJ, Slifer MA, Gilbert JR, Haines JL, Pericak-Vance MA (2009) Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet 84:35–43Google Scholar
  4. Berridge MJ (2017) Vitamin D and depression: cellular and regulatory mechanisms. Pharmacol Rev 69(2):80–92.  https://doi.org/10.1124/pr.116.013227 Google Scholar
  5. Berry D, Hypponen E (2011) Determinants of vitamin D status: focus on genetic variations. Curr Opin Nephrol Hypertens 20(4):331–336.  https://doi.org/10.1097/MNH.0b013e328346d6ba Google Scholar
  6. Beydoun MA, Tajuddin SM, Dore GA, Canas JA, Beydoun HA, Evans MK, Zonderman AB (2017) Vitamin D receptor and megalin gene polymorphisms are associated with longitudinal cognitive change among African-American urban adults. J Nutr 147(6):1048–1062.  https://doi.org/10.3945/jn.116.244962 Google Scholar
  7. Bouillon R, Carmeliet G, Daci E, Segaert S, Verstuyf A (1998) Vitamin D metabolism and action. Osteoporos Int 8:13–19Google Scholar
  8. Burkert R, McGrath J, Eyles D (2003) Vitamin D receptor expression in the embryonic rat brain. Neurosci Res Commun 33:63–71Google Scholar
  9. Busto GU, Guven-Ozkan T, Fulga TA, Van Vactor D, Davis RL (2015) microRNAs that promote or inhibit memory formation in Drosophila melanogaster. Genetics 200(2):569–580.  https://doi.org/10.1534/genetics.114.169623 Google Scholar
  10. Butler MW, Burt A, Edwards TL, Zuchner S, Scott WK, Martin ER, Vance JM, Wang L (2011) Vitamin D receptor gene as a candidate gene for Parkinson disease. Ann Hum Genet 75(2):201–210Google Scholar
  11. Cataldi S, Arcuri C, Hunot S, Mecca C, Codini M, Laurenti ME, Ferri I, Loreti E, Garcia-Gil M, Traina G, Conte C, Ambesi-Impiombato FS, Beccari T, Curcio F, Albi E (2018) Effect of vitamin D in HN9.10e embryonic hippocampal cells and in hippocampus from MPTP-induced Parkinson’s disease mouse model. Front Cell Neurosci 12:31.  https://doi.org/10.3389/fncel.2018.00031 Google Scholar
  12. Cherniack EP, Florez H, Roos BA, Troen BR, Levis S (2008) Hypovitaminosis D in the elderly: from bone to brain. J Nutr Health Aging 12(6):366–373Google Scholar
  13. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96(1):365–408.  https://doi.org/10.1152/physrev.00014.2015 Google Scholar
  14. Dursun E, Gezen-Ak D (2017) Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS One 12(11):e0188605.  https://doi.org/10.1371/journal.pone.0188605 Google Scholar
  15. Dursun E, Gezen-Ak D, Yilmazer S (2011) A novel perspective for disease: vitamin D receptor suppression by amyloid-beta and preventing the amyloid-beta induced alterations by vitamin D in cortical neurons. J Alzheimers Dis 23(2):207–219.  https://doi.org/10.3233/JAD-2010-101377
  16. Dursun E, Gezen-Ak D, Yilmazer S (2013a) Beta amyloid suppresses the expression of the vitamin d receptor gene and induces the expression of the vitamin d catabolic enzyme gene in hippocampal neurons. Dement Geriatr Cogn Disord 36(1–2):76–86.  https://doi.org/10.1159/000350319 Google Scholar
  17. Dursun E, Gezen-Ak D, Yilmazer S (2013b) A new mechanism for amyloid-beta induction of iNOS: vitamin D-VDR pathway disruption. J Alzheimers Dis 36(3):459–474.  https://doi.org/10.3233/JAD-130416 Google Scholar
  18. Dursun E, Gezen-Ak D, Yilmazer S (2013c) The influence of vitamin D treatment on the inducible nitric oxide synthase expression in primary hippocampal neurons. Arch Neuropsych 3:163–168.  https://doi.org/10.4274/npa.y7089 Google Scholar
  19. Dursun E, Alaylioglu M, Bilgic B, Hanagasi H, Lohmann E, Atasoy IL, Candas E, Araz OS, Onal B, Gurvit H, Yilmazer S, Gezen-Ak D (2016) Vitamin D deficiency might pose a greater risk for ApoEvarepsilon4 non-carrier Alzheimer’s disease patients. Neurol Sci 37(10):1633–1643.  https://doi.org/10.1007/s10072-016-2647-1 Google Scholar
  20. El Fatimy R, Li S, Chen Z, Mushannen T, Gongala S, Wei Z, Balu DT, Rabinovsky R, Cantlon A, Elkhal A, Selkoe DJ, Sonntag KC, Walsh DM, Krichevsky AM (2018) MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol 136(4):537–555.  https://doi.org/10.1007/s00401-018-1880-5 Google Scholar
  21. Elaroussi MA, Prahl JM, DeLuca HF (1994) The avian vitamin D receptors: primary structures and their origins. Proc Natl Acad Sci U S A 91:11596–11600Google Scholar
  22. Essa S, Denzer N, Mahlknecht U, Klein R, Collnot EM, Tilgen W, Reichrath J (2010) VDR microRNA expression and epigenetic silencing of vitamin D signaling in melanoma cells. J Steroid Biochem Mol Biol 121:110–113Google Scholar
  23. Evatt ML, DeLong MR, Khazai N, Rosen A, Triche S, Tangpricha V (2008) Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol 65(10):1348–1352Google Scholar
  24. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29:21–30Google Scholar
  25. Feng MG, Liu CF, Chen L, Feng WB, Liu M, Hai H, Lu JM (2018) MiR-21 attenuates apoptosis-triggered by amyloid-beta via modulating PDCD4/ PI3K/AKT/GSK-3beta pathway in SH-SY5Y cells. Biomed Pharmacother 101:1003–1007.  https://doi.org/10.1016/j.biopha.2018.02.043 Google Scholar
  26. Ferrari S, Bonjour JP, Rizzoli R (1998) The vitamin D receptor gene and calcium metabolism. Trends Endocrinol Metab 9(7):259–263Google Scholar
  27. Gao J, Liu QG (2011) The role of miR-26 in tumors and normal tissues (review). Oncol Lett 2(6):1019–1023.  https://doi.org/10.3892/ol.2011.413 Google Scholar
  28. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13(3):100–105Google Scholar
  29. Gennarino VA, Sardiello M, Avellino R, Meola N, Maselli V, Anand S, Cutillo L, Ballabio A, Banfi S (2009) MicroRNA target prediction by expression analysis of host genes. Genome Res 19(3):481–490.  https://doi.org/10.1101/gr.084129.108 Google Scholar
  30. Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, Jackson AL, Carleton MO, Linsley PS, Cleary MA, Chau BN (2008) Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res 68(24):10105–10112.  https://doi.org/10.1158/0008-5472.CAN-08-1846 Google Scholar
  31. Gezen-Ak D, Dursun E, Ertan T, Hanagasi H, Gurvit H, Emre M, Eker E, Ozturk M, Engin F, Yilmazer S (2007) Association between vitamin D receptor gene polymorphism and Alzheimer’s disease. Tohoku J Exp Med 212(3):275–282Google Scholar
  32. Gezen-Ak D, Dursun E, Yilmazer S (2011) The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS One 6(3):e17553.  https://doi.org/10.1371/journal.pone.0017553 Google Scholar
  33. Gezen-Ak D, Dursun E, Bilgic B, Hanagasi H, Ertan T, Gurvit H, Emre M, Eker E, Ulutin T, Uysal O, Yilmazer S (2012) Vitamin D receptor gene haplotype is associated with late-onset Alzheimer’s disease. Tohoku J Exp Med 228(3):189–196Google Scholar
  34. Gezen-Ak D, Dursun E, Yilmazer S (2013a) Vitamin D inquiry in hippocampal neurons: consequences of vitamin D-VDR pathway disruption on calcium channel and the vitamin D requirement. Neurol Sci 34(8):1453–1458Google Scholar
  35. Gezen-Ak D, Dursun E, Yilmazer S (2013b) The effect of vitamin D treatment on nerve growth factor release (NGF) in hippocampal neurons. Arch Neuropsych.  https://doi.org/10.4274/npa.y7076
  36. Gezen-Ak D, Yilmazer S, Dursun E (2014) Why vitamin D in Alzheimer’s disease? The hypothesis. J Alzheimers Dis 40(2):257–269.  https://doi.org/10.3233/JAD-131970 Google Scholar
  37. Gezen-Ak D, Atasoy IL, Candas E, Alaylioglu M, Yilmazer S, Dursun E (2017a) Vitamin D receptor regulates amyloid beta 1-42 production with protein disulfide isomerase A3. ACS Chem Neurosci 8(10):2335–2346.  https://doi.org/10.1021/acschemneuro.7b00245 Google Scholar
  38. Gezen-Ak D, Alaylioglu M, Genc G, Gunduz A, Candas E, Bilgic B, Atasoy IL, Apaydin H, Kiziltan G, Gurvit H, Hanagasi H, Ertan S, Yilmazer S, Dursun E (2017b) GC and VDR SNPs and vitamin D levels in Parkinson’s disease: the relevance to clinical features. NeuroMolecular Med 19(1):24–40.  https://doi.org/10.1007/s12017-016-8415-9 Google Scholar
  39. Gezen-Ak D, Atasoy İL, Candaş E, Dursun E (2018) The transcriptional regulatory properties of amyloid beta 1–42 may include regulation of genes related to neurodegeneration. NeuroMolecular Med 20:363–375.  https://doi.org/10.1007/s12017-018-8498-6 Google Scholar
  40. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665.  https://doi.org/10.1016/j.cell.2013.03.043 Google Scholar
  41. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) (1982) Nomenclature of vitamin D. Recommendations 1981. Eur J Biochem 124(2):223–227Google Scholar
  42. Johnson JA, Grande JP, Windebank AJ, Kumar R (1996) 1,25-Dihydroxyvitamin D(3) receptors in developing dorsal root ganglia of fetal rats. Brain Res Dev Brain Res 92:120–124Google Scholar
  43. Komagata S, Nakajima M, Takagi S, Mohri T, Taniya T, Yokoi T (2009) Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol Pharmacol 76(4):702–709.  https://doi.org/10.1124/mol.109.056986 Google Scholar
  44. Laczmanski L, Jakubik M, Bednarek-Tupikowska G, Rymaszewska J, Sloka N, Lwow F (2015) Vitamin D receptor gene polymorphisms in Alzheimer’s disease patients. Exp Gerontol 69:142–147.  https://doi.org/10.1016/j.exger.2015.06.012 Google Scholar
  45. Landel V, Millet P, Baranger K, Loriod B, Feron F (2016) Vitamin D interacts with Esr1 and Igf1 to regulate molecular pathways relevant to Alzheimer’s disease. Mol Neurodegener 11:22.  https://doi.org/10.1186/s13024-016-0087-2 Google Scholar
  46. Landel V, Stephan D, Cui X, Eyles D, Feron F (2017) Differential expression of vitamin D-associated enzymes and receptors in brain cell subtypes. J Steroid Biochem Mol Biol 177:129–134.  https://doi.org/10.1016/j.jsbmb.2017.09.008 Google Scholar
  47. Langub MC, Herman JP, Malluche HH, Koszewski NJ (2001) Evidence of functional vitamin D receptors in rat hippocampus. Neuroscience 104:49–56Google Scholar
  48. Lechner D, Kallay E, Cross HS (2007) 1alpha,25-dihydroxyvitamin D3 downregulates CYP27B1 and induces CYP24A1 in colon cells. Mol Cell Endocrinol 263(1–2):55–64.  https://doi.org/10.1016/j.mce.2006.08.009 Google Scholar
  49. Lee YH, Kim JH, Song GG (2014) Vitamin D receptor polymorphisms and susceptibility to Parkinson’s disease and Alzheimer’s disease: a meta-analysis. Neurol Sci 35(12):1947–1953.  https://doi.org/10.1007/s10072-014-1868-4 Google Scholar
  50. Lehmann DJ, Refsum H, Warden DR, Medway C, Wilcock GK, Smith DA (2011) The vitamin D receptor gene is associated with Alzheimer’s disease. Neurosci Lett 504:79–82Google Scholar
  51. Lin YC, Hsieh LC, Kuo MW, Yu J, Kuo HH, Lo WL, Lin RJ, Yu AL, Li WH (2007) Human TRIM71 and its nematode homologue are targets of let-7 microRNA and its zebrafish orthologue is essential for development. Mol Biol Evol 24(11):2525–2534.  https://doi.org/10.1093/molbev/msm195 Google Scholar
  52. Llewellyn DJ, Lang IA, Langa KM, Muniz-Terrera G, Phillips CL, Cherubini A, Ferrucci L, Melzer D (2010) Vitamin D and risk of cognitive decline in elderly persons. Arch Intern Med 170(13):1135–1141Google Scholar
  53. Lukiw WJ, Alexandrov PN (2012) Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain. Mol Neurobiol 46(1):11–19.  https://doi.org/10.1007/s12035-012-8234-4 Google Scholar
  54. Masoumi A, Goldenson B, Ghirmai S, Avagyan H, Zaghi J, Abel K, Zheng X, Espinosa-Jeffrey A, Mahanian M, Liu PT, Hewison M, Mizwickie M, Cashman J, Fiala M (2009) 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 17(3):703–717Google Scholar
  55. McKeever PM, Schneider R, Taghdiri F, Weichert A, Multani N, Brown RA, Boxer AL, Karydas A, Miller B, Robertson J, Tartaglia MC (2018) MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease. Mol Neurobiol 55:8826–8841.  https://doi.org/10.1007/s12035-018-1032-x Google Scholar
  56. Mizwicki MT, Norman AW (2009) The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci Signal 2(75):re4.  https://doi.org/10.1126/scisignal.275re4 Google Scholar
  57. Mizwicki MT, Liu G, Fiala M, Magpantay L, Sayre J, Siani A, Mahanian M, Weitzman R, Hayden EY, Rosenthal MJ, Nemere I, Ringman J, Teplow DB (2013) 1alpha,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-beta phagocytosis and inflammation in Alzheimer’s disease patients. J Alzheimers Dis 34(1):155–170.  https://doi.org/10.3233/JAD-121735 Google Scholar
  58. Mizwicki MT, Menegaz D, Zhang J, Barrientos-Durán A, Tse S, Cashman JR, Griffin PR, Fiala M (2011) Genomic and nongenomic signaling induced by 1α,25(OH)2-vitamin D3 promotes the recovery of amyloid-β phagocytosis by Alzheimer’s disease macrophages. J Alzheimers Dis 29(1):51–62Google Scholar
  59. Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T (2009) MicroRNA regulates human vitamin D receptor. Int J Cancer 125(6):1328–1333.  https://doi.org/10.1002/ijc.24459 Google Scholar
  60. Morello M, Landel V, Lacassagne E, Baranger K, Annweiler C, Feron F, Millet P (2018) Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease. Mol Neurobiol 55:6463–6479.  https://doi.org/10.1007/s12035-017-0839-1 Google Scholar
  61. Musiol IM, Stumpf WE, Bidmon HJ, Heiss C, Mayerhofer A, Bartke A (1992) Vitamin D nuclear binding to neurons of the septal, substriatal and amygdaloid area in the Siberian hamster (Phodopus sungorus) brain. Neuroscience 48:841–848Google Scholar
  62. Nadorp B, Soreq H (2014) Predicted overlapping microRNA regulators of acetylcholine packaging and degradation in neuroinflammation-related disorders. Front Mol Neurosci 7:9.  https://doi.org/10.3389/fnmol.2014.00009 Google Scholar
  63. Nolan T, Hands BE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Natureprotocols 1(3):1556–1582Google Scholar
  64. Pan YZ, Gao W, Yu AM (2009) MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 37(10):2112–2117.  https://doi.org/10.1124/dmd.109.027680 Google Scholar
  65. Price P, Brewer GJ (1998) Serum-free media for neural cell cultures. In: Fedoroff S, Richardson A (eds) Protocols for neural cell culture, 3rd edn. Humana Press, New Jersey, pp 255–264Google Scholar
  66. Prufer K, Veenstra TD, Jirikowski GF, Kumar R (1999) Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J Chem Neuroanat 16:135–145Google Scholar
  67. Rochel N, Molnar F (2017) Structural aspects of vitamin D endocrinology. Mol Cell Endocrinol 453:22–35.  https://doi.org/10.1016/j.mce.2017.02.046 Google Scholar
  68. Shu B, Zhang X, Du G, Fu Q, Huang L (2018) MicroRNA-107 prevents amyloid-beta-induced neurotoxicity and memory impairment in mice. Int J Mol Med 41(3):1665–1672.  https://doi.org/10.3892/ijmm.2017.3339 Google Scholar
  69. Simchovitz A, Heneka MT, Soreq H (2017) Personalized genetics of the cholinergic blockade of neuroinflammation. J Neurochem 142 Suppl 2:178–187.  https://doi.org/10.1111/jnc.13928 Google Scholar
  70. Song J, Cho KJ, Oh Y, Lee JE (2015) Let7a involves in neural stem cell differentiation relating with TLX level. Biochem Biophys Res Commun 462(4):396–401.  https://doi.org/10.1016/j.bbrc.2015.05.004 Google Scholar
  71. Sutherland MK, Somerville MJ, Yoong LK, Bergeron C, Haussler MR, McLachlan DR (1992) Reduction of vitamin D hormone receptor mRNA levels in Alzheimer as compared to Huntington hippocampus: correlation with calbindin-28k mRNA levels. Brain Res Mol Brain Res 13:239–250Google Scholar
  72. Taniura H, Ito M, Sanada N, Kuramoto N, Ohno Y, Nakamichi N, Yoneda Y (2006) Chronic vitamin D(3) treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat cortical neurons. J Neurosci Res 83:1179–1189Google Scholar
  73. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152.  https://doi.org/10.1038/nature06487 Google Scholar
  74. Tiedt S, Prestel M, Malik R, Schieferdecker N, Duering M, Kautzky V, Stoycheva I, Bock J, Northoff BH, Klein M, Dorn F, Krohn K, Teupser D, Liesz A, Plesnila N, Holdt LM, Dichgans M (2017) RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res 121(8):970–980.  https://doi.org/10.1161/CIRCRESAHA.117.311572 Google Scholar
  75. Veenstra TD, Prufer K, Koenigsberger C, Brimijoin SW, Grande JP, Kumar R (1998) 1,25-Dihydroxyvitamin D3 receptors in the central nervous system of the rat embryo. Brain Res 804:193–205Google Scholar
  76. Walbert T, Jirikowski GF, Prufer K (2001) Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the limbic system of the rat. Horm Metab Res 33:525–531Google Scholar
  77. Wang LL, Pan XL, Wang Y, Tang HD, Deng YL, Ren RJ, Xu W, Ma JF, Wang G, Chen SD (2011) A single nucleotide polymorphism in LRP2 is associated with susceptibility to Alzheimer’s disease in the Chinese population. Clin Chim Acta 412(3–4):268–270.  https://doi.org/10.1016/j.cca.2010.10.015 Google Scholar
  78. Xiaobing T, Qingyuan D (2017) Characterization of microRNAs profiles of induced pluripotent stem cells reprogrammed from human dental pulp stem cells and stem cells from apical papilla. Hua Xi Kou Qiang Yi Xue Za Zhi 35(3):269–274.  https://doi.org/10.7518/hxkq.2017.03.008 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of MedicineIstanbul University-CerrahpasaIstanbulTurkey
  2. 2.Department of Medical Biology, Faculty of MedicineAltinbas UniversityIstanbulTurkey

Personalised recommendations