Advertisement

Journal of Molecular Neuroscience

, Volume 66, Issue 2, pp 251–260 | Cite as

Co-Administration of Progesterone and Melatonin Attenuates Ischemia-Induced Hippocampal Damage in Rats

  • Azim Hedayatpour
  • Maryam Shiasi
  • Hamidreza Famitafreshi
  • Farid Abolhassani
  • Parisa Ebrahimnia
  • Tahmineh Mokhtari
  • Gholamreza Hassanzaeh
  • Morteza Karimian
  • Bashir Nazparvar
  • Narges Marefati
  • Masoomeh Dehghan Tarzjani
Article
  • 54 Downloads

Abstract

Stroke is the second leading reason for death worldwide and is one of the fundamental causes of long-term disabilities. The aim of this investigation was to assess the impact of combined administration progesterone (PROG) and melatonin (MEL) on stroke complications. Male Wistar rats (9–10 weeks) weighing 250–300 g were used as a part of this examination. They were randomly separated into eight groups (nine rats for every group). Common carotid arteries on the two sides clamped (BCCAO model) with non-traumatic clips for 20 min. At that point, the rats were treated with 8 mg/kg PROG, 10 mg/kg MEL, and vehicles (sesamoid and normal saline). Morris water maze testing was performed following 2 weeks. At that point, the rats were euthanized, and histological examination was directed. The outcome demonstrated that utilization of PROG and MEL in treatment groups essentially increases the quantity of pyramidal cells and enhances spatial memory compared to non-treatment groups (p < 0.05). Moreover, the neuroleptic factor gene expression and protein concentration were significantly enhanced in the treated groups (p < 0.05). As indicated by the outcomes, co-administration of PROG and MEL can enhance learning and memory by surviving the pyramidal neurons and diminishing neural death by means of increasing neuroleptic factors in the hippocampal CA1 zone.

Keywords

Global brain ischemia Progesterone Melatonin Apoptosis and neurotrophic factors 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Chen TY, Lee MY, Chen HY, Kuo YL, Lin SC, Wu TS, Lee E (2006) Melatonin attenuates the postischemic increase in blood–brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice. J Pineal Res 40:242–250CrossRefPubMedGoogle Scholar
  2. Chesler EJ, Juraska JM (2000) Acute administration of estrogen and progesterone impairs the acquisition of the spatial Morris water maze in ovariectomized rats. Horm Behav 38:234–242CrossRefPubMedGoogle Scholar
  3. Chu S-F, Zhang Z, Zhang W, Zhang M-J, Gao Y, Han N, Zuo W, Huang H-Y, Chen N-H (2017) Upregulating the expression of survivin-HBXIP complex contributes to the protective role of IMM-H004 in transient global cerebral ischemia/reperfusion. Mol Neurobiol 54:524–540CrossRefPubMedGoogle Scholar
  4. Cuzzocrea S, Costantino G, Gitto E, Mazzon E, Fulia F, Serraino I, Cordaro S, Barberi I, de Sarro A, Caputi AP (2000) Protective effects of melatonin in ischemic brain injury. J Pineal Res 29:217–227CrossRefPubMedGoogle Scholar
  5. Espinosa-García C, Aguilar-Hernández A, Cervantes M, Moralí G (2014) Effects of progesterone on neurite growth inhibitors in the hippocampus following global cerebral ischemia. Brain Res 1545:23–34CrossRefPubMedGoogle Scholar
  6. Gaignard P, Fréchou M, Schumacher M, Thérond P, Mattern C, Slama A, Guennoun R (2016) Progesterone reduces brain mitochondrial dysfunction after transient focal ischemia in male and female mice. J Cereb Blood Flow Metab 36:562–568CrossRefPubMedGoogle Scholar
  7. Harburger LL, Bennett JC, Frick KM (2007) Effects of estrogen and progesterone on spatial memory consolidation in aged females. Neurobiol Aging 28:602–610CrossRefPubMedGoogle Scholar
  8. Hassanzadeh P, Arbabi E (2012) The effects of progesterone on glial cell line-derived neurotrophic factor secretion from C6 glioma cells. Iran J Basic Med Sci 15:1046PubMedPubMedCentralGoogle Scholar
  9. Imbesi M, Uz T, Manev H (2008) Role of melatonin receptors in the effects of melatonin on BDNF and neuroprotection in mouse cerebellar neurons. J Neural Transm 115:1495–1499CrossRefPubMedGoogle Scholar
  10. Ishrat T, Sayeed I, Atif F, Hua F, Stein DG (2010) Progesterone and allopregnanolone attenuate blood–brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Exp Neurol 226:183–190CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ishrat T, Sayeed I, Atif F, Hua F, Stein DG (2012) Progesterone is neuroprotective against ischemic brain injury through its effects on the phosphoinositide 3-kinase/protein kinase B signaling pathway. Neuroscience 210:442–450CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kondoh T, Uneyama H, Nishino H, Torii K (2002) Melatonin reduces cerebral edema formation caused by transient forebrain ischemia in rats. Life Sci 72:583–590CrossRefPubMedGoogle Scholar
  13. Kühl NM, Hoekstra D, de Vries H, de Keyser J (2003) Insulin-like growth factor-binding protein 6 inhibits survival and differentiation of rat oligodendrocyte precursor cells. Glia 44:91–101CrossRefPubMedGoogle Scholar
  14. Lee E, Lee MY, Chen HY, Hsu YS, Wu TS, Chen ST, Chang GL (2005) Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. J Pineal Res 38:42–52CrossRefPubMedGoogle Scholar
  15. Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, Yang I, Hsu YS, Wu TS, Lee E (2007) Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res 42:297–309CrossRefPubMedGoogle Scholar
  16. Letechipía-Vallejo G, López-Loeza E, ESPINOZA-GONZÁLEZ V, González-Burgos I, Olvera-Cortés ME, Moralí G, Cervantes M (2007) Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats. J Pineal Res 42:138–146CrossRefPubMedGoogle Scholar
  17. Lin H-W, Lee E-J (2009) Effects of melatonin in experimental stroke models in acute, sub-acute, and chronic stages. Neuropsychiatr Dis Treat 5:157–162CrossRefPubMedPubMedCentralGoogle Scholar
  18. Manev H, Uz T, Kharlamov A, Joo J (1996) Increased brain damage after stroke or excitotoxic seizures in melatonin-deficient rats. FASEB J 10:1546–1551CrossRefPubMedGoogle Scholar
  19. Melchiorri D, Reiter R, Sewerynek E, Chen L, Nistico G (1995) Melatonin reduces kainate-induced lipid peroxidation in homogenates of different brain regions. FASEB J 9:1205–1210CrossRefPubMedGoogle Scholar
  20. Mori MA, Meyer E, Soares LM, Milani H, Guimarães FS, de Oliveira RMW (2017) Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuro-Psychopharmacol Biol Psychiatry 75:94–105CrossRefGoogle Scholar
  21. Movassaghi S, Sharifi ZN, Soleimani M, Joghataii MT, Hashemi M, Shafaroodi H, Mehdizadeh M (2012) Effect of pentoxifylline on ischemia-induced brain damage and spatial memory impairment in rat. Iran J Basic Med Sci 15:1083PubMedPubMedCentralGoogle Scholar
  22. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547CrossRefPubMedPubMedCentralGoogle Scholar
  23. Reiter RJ (2000) Melatonin: lowering the high price of free radicals. Physiology 15:246–250CrossRefGoogle Scholar
  24. Sayeed I, Stein DG (2009) Progesterone as a neuroprotective factor in traumatic and ischemic brain injury. Prog Brain Res 175:219–237CrossRefPubMedGoogle Scholar
  25. Sharifi Z-N, Abolhassani F, Zarrindast MR, Movassaghi S, Rahimian N, Hassanzadeh G (2011) Effects of FK506 on hippocampal CA1 cells following transient global ischemia/reperfusion in Wistar rat. Stroke Res Treat 2012Google Scholar
  26. Shinozuka K, Staples M, Borlongan CV (2013) Melatonin-based therapeutics for neuroprotection in stroke. Int J Mol Sci 14:8924–8947CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tao R-R, Ji Y-L, Lu Y-M, Fukunaga K, Han F (2012) Targeting nitrosative stress for neurovascular protection: new implications in brain diseases. Curr Drug Targets 13:272–284CrossRefPubMedGoogle Scholar
  28. Tao RR, Huang JY, Shao XJ, YE WF, Tian Y, Liao MH, Fukunaga K, Lou YJ, Han F, Lu YM (2013) Ischemic injury promotes Keap1 nitration and disturbance of antioxidative responses in endothelial cells: a potential vasoprotective effect of melatonin. J Pineal Res 54:271–281CrossRefPubMedGoogle Scholar
  29. Tütüncüler F, Eskiocak S, Başaran ÜN, Ekuklu G, Ayvaz S, Vatansever Ü (2005) The protective role of melatonin in experimental hypoxic brain damage. Pediatr Int 47:434–439CrossRefPubMedGoogle Scholar
  30. Watson N, Diamandis T, Gonzales-Portillo C, Reyes S, Borlongan CV (2016) Melatonin as an antioxidant for stroke neuroprotection. Cell Transplant 25:883–891CrossRefPubMedGoogle Scholar
  31. Wong R, Gibson CL, Kendall DA, Bath PM (2014) Evaluating the translational potential of progesterone treatment following transient cerebral ischaemia in male mice. BMC Neurosci 15:131CrossRefPubMedPubMedCentralGoogle Scholar
  32. Xu Q, Ji X-F, Chi T-Y, Liu P, Jin G, Gu S-L, Zou L-B (2015) Sigma 1 receptor activation regulates brain-derived neurotrophic factor through NR2A-CaMKIV-TORC1 pathway to rescue the impairment of learning and memory induced by brain ischaemia/reperfusion. Psychopharmacology 232:1779–1791CrossRefPubMedGoogle Scholar
  33. Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 58:61–70CrossRefPubMedGoogle Scholar
  34. Yao X-L, Liu J, Lee E, Ling GS, Mccabe JT (2005) Progesterone differentially regulates pro-and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J Neurotrauma 22:656–668CrossRefPubMedGoogle Scholar
  35. Younan N, El-Attar S & Sabry D (2012). Progesterone as a neuroprotective treatment in brain ischemic injury in Ovariectomized rats: relation to brain derived neurotrophic factor, Synaptic Plasticity and Astrocytes The Medical Journal of Cairo University, 80Google Scholar
  36. Yousuf S, Atif F, Sayeed I, Wang J, Stein DG (2013) Post-stroke infections exacerbate ischemic brain injury in middle-aged rats: immunomodulation and neuroprotection by progesterone. Neuroscience 239:92–102CrossRefPubMedGoogle Scholar
  37. Yousuf S, Sayeed I, Atif F, Tang H, Wang J, Stein DG (2014) Delayed progesterone treatment reduces brain infarction and improves functional outcomes after ischemic stroke: a time-window study in middle-aged rats. J Cereb Blood Flow Metab 34:297–306CrossRefPubMedGoogle Scholar
  38. Zhang HM, Zhang Y (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res 57:131–146CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Azim Hedayatpour
    • 1
  • Maryam Shiasi
    • 1
  • Hamidreza Famitafreshi
    • 2
  • Farid Abolhassani
    • 1
  • Parisa Ebrahimnia
    • 1
  • Tahmineh Mokhtari
    • 1
  • Gholamreza Hassanzaeh
    • 1
  • Morteza Karimian
    • 2
  • Bashir Nazparvar
    • 3
  • Narges Marefati
    • 2
  • Masoomeh Dehghan Tarzjani
    • 4
  1. 1.Department of AnatomyTehran University of Medical SciencesTehranIran
  2. 2.Physiology DepartmentTehran University of Medical SciencesTehranIran
  3. 3.Legal Medicine Organization of IranTehranIran
  4. 4.Tehran University of Medical SciencesTehranIran

Personalised recommendations