Journal of Molecular Neuroscience

, Volume 66, Issue 2, pp 172–179 | Cite as

Potential of Extracellular Vesicles in Neurodegenerative Diseases: Diagnostic and Therapeutic Indications

  • Mehrnaz Izadpanah
  • Arshia Seddigh
  • Somayeh Ebrahimi Barough
  • Seyed Abolhassan Shahzadeh Fazeli
  • Jafar AiEmail author


Extracellular vesicles (EVs) are membrane-bound vesicles, including exosomes and microvesicles. EVs are nanometer sized, found in physiological fluids such as urine, blood, cerebro-spinal fluid (CSF), with a capacity of transferring various biological materials such as microRNAs, proteins, and lipids among cells without direct cell-to-cell contact. Many cells in the nervous system have been shown to release EVs. These vesicles are involved in intercellular communication and a variety of biological processes such as modulation of immune response, signal transduction, and transport of genetic materials with low immunogenicity; therefore, they have also been recently investigated for the delivery of therapeutic molecules such as siRNAs and drugs in the treatment of diseases. In addition, since EV components reflect the physiological status of the cells and tissues producing them, they can be utilized as biomarkers for early detection of various diseases. In this review, we summarize EV application, in diagnosis as biomarker sources and as a carrier tool for drug delivery in EV-based therapies in neurodegenerative diseases.


Extracellular vesicle Neurodegenerative disease EV-based therapies 



Extracellular vesicle


Cerebrospinal fluid


Neurodegenerative diseases


Alzheimer’s disease


Huntington’s disease


Parkinson’s disease


Amyotrophic lateral sclerosis


Cluster of differentiation


Menstrual mesenchymal stem cell


Blood–brain barrier


Bone marrow stem cell


Central nervous system


Short interference RNA


Rabies virus glycoprotein peptide


Neurotrophic factors



Amyloid-beta peptide


Glial-derived neurotrophic factor


Adipose stem cell


Glyceraldehyde-3-phosphate dehydrogenase


Beta-site amyloid precursor protein cleaving enzyme 1


Brain-derived neurotrophic factor


Tropomyosin-related kinase B


Toll-like receptor 7


Trans-active response


DNA-binding protein


Superoxide dismutase 1


  1. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345CrossRefPubMedGoogle Scholar
  2. Amaro IA, Henderson LA (2016) An intrabody drug (rAAV6-INT41) reduces the binding of N-terminal huntingtin fragment (s) to DNA to basal levels in PC12 cells and delays cognitive loss in the R6/2 animal model. J Neurodegener Dis 2016:7120753PubMedPubMedCentralGoogle Scholar
  3. Bonafede R, Mariotti R (2017) ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front Cell Neurosci 11:80CrossRefPubMedPubMedCentralGoogle Scholar
  4. Budnik V, Ruiz-Cañada C, Wendler F (2016a) Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17:160–172CrossRefPubMedPubMedCentralGoogle Scholar
  5. Budnik V, Ruiz-Cañada C, Wendler F (2016b) Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17:160CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carreiro AV, Mendonça A, de Carvalho M, Madeira SC (2015) Integrative biomarker discovery in neurodegenerative diseases. Wiley Interdiscip Rev Syst Biol Med 7:357–379CrossRefPubMedGoogle Scholar
  7. Chen X, Pan W (2014) The treatment strategies for neurodegenerative diseases by integrative medicine. Integr Med Int 1(4):223–225CrossRefGoogle Scholar
  8. Choi H, Lee DS (2016) Illuminating the physiology of extracellular vesicles. Stem Cell Res Ther 7:55CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ciregia F, Urbani A, Palmisano G (2017) Extracellular vesicles in brain tumors and neurodegenerative diseases. Front Mol Neurosci 10:276CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cooper JM et al (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 29:1476–1485CrossRefPubMedPubMedCentralGoogle Scholar
  11. de Godoy MA et al (2018) Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. J Biol Chem 293:1957–1975CrossRefPubMedGoogle Scholar
  12. Demeestere J, Vandenberghe W (2011) Experimental surgical therapies for Huntington’s disease. CNS Neurosci Ther 17:705–713CrossRefPubMedGoogle Scholar
  13. Didiot MC et al (2016) Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther 24:1836–1847. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dinkins MB, Dasgupta S, Wang G, Zhu G, He Q, Kong JN, Bieberich E (2015) The 5XFAD mouse model of Alzheimer’s disease exhibits an age-dependent increase in anti-ceramide IGG and exogenous administration of ceramide further increases anti-ceramide titers and amyloid plaque burden. J Alzheimers Dis 46:55–61CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ederle H et al (2018) Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci Report 8:7084CrossRefGoogle Scholar
  16. EL Andaloussi S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357. CrossRefGoogle Scholar
  17. Foulds PG et al (2011) Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J 25:4127–4137CrossRefPubMedGoogle Scholar
  18. Fuhrmann G, Herrmann IK, Stevens MM (2015) Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. Nano Today 10:397–409CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gui Y, Liu H, Zhang L, Lv W, Hu X (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6(35):37043Google Scholar
  20. Hall J, Prabhakar S, Balaj L, Lai CP, Cerione RA, Breakefield XO (2016) Delivery of therapeutic proteins via extracellular vesicles: review and potential treatments for Parkinson’s disease, glioma, and schwannoma. Cell Mol Neurobiol 36:417–427CrossRefPubMedPubMedCentralGoogle Scholar
  21. Haney MJ et al (2015a) Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207:18–30CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015b) Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207:18–30. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jain KK (2012) Nanobiotechnology-based strategies for crossing the blood–brain barrier. Nanomedicine 7:1225–1233CrossRefPubMedGoogle Scholar
  24. Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A, Pivoriūnas A (2015) Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine–induced apoptosis. Cytotherapy 17:932–939CrossRefPubMedGoogle Scholar
  25. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, Takeshita F, Sakai Y, Kuroda M, Ochiya T (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 3:1197. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Khan S et al (2015) Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. Biomed Res Int 2015:379817PubMedPubMedCentralGoogle Scholar
  27. Kiecolt-Glaser JK, Gouin J-P, Weng N-p, Malarkey WB, Beversdorf DQ, Glaser R (2011) Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosom Med 73:16–22CrossRefPubMedGoogle Scholar
  28. Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B (2016) Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci 10:109. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lanni C, Stanga S, Racchi M, Govoni S (2010) The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders. Curr Pharm Des 16:698–717CrossRefPubMedGoogle Scholar
  31. Lässer C (2014) Exosomes in diagnostic and therapeutic applications biomarker vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 15(1):103–117CrossRefPubMedGoogle Scholar
  32. Lee JC, Seong J, Kim SH, Lee SJ, Cho YJ, An J, Nam DH, Joo KM, Cha CI (2012a) Replacement of microglial cells using Clodronate liposome and bone marrow transplantation in the central nervous system of SOD1 G93A transgenic mice as an in vivo model of amyotrophic lateral sclerosis. Biochem Biophys Res Commun 418:359–365CrossRefPubMedGoogle Scholar
  33. Lee Y, Andaloussi SE, Wood MJ (2012b) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21:R125–R134CrossRefPubMedGoogle Scholar
  34. Lee M, Liu T, Im W, Kim M (2016) Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model. Eur J Neurosci 44:2114–2119CrossRefPubMedGoogle Scholar
  35. Lee ST, Im W, Ban JJ, Lee M, Jung KH, Lee SK, Kim M (2017).Exosome-based delivery of miR-124 in a Huntington’s disease model. Journal of movement disorders 10(1):45CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012) An unconventional role for miRNA: let-7 activates toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835CrossRefPubMedGoogle Scholar
  37. Lener T et al (2015) Applying extracellular vesicles based therapeutics in clinical trials–an ISEV position paper. J Extracell Vesicles 4:30087CrossRefPubMedGoogle Scholar
  38. Levy YS, Gilgun-Sherki Y, Melamed E, Offen D (2005) Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 19:97–127CrossRefPubMedGoogle Scholar
  39. Li Y, Cheng Q, Hu G, Deng T, Wang Q, Zhou J, Su X (2018) Extracellular vesicles in mesenchymal stromal cells: A novel therapeutic strategy for stroke. Exp Ther Med 15:4067–4079PubMedPubMedCentralGoogle Scholar
  40. Liew LC, Katsuda T, Gailhouste L, Nakagama H, Ochiya T (2017) Mesenchymal stem cell-derived extracellular vesicles: a glimmer of hope in treating Alzheimer’s disease. Int Immunol 29(1):11–19CrossRefPubMedGoogle Scholar
  41. Liu C-G, Song J, Zhang Y-Q, Wang P-C (2014) MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol Med Rep 10:2395–2400CrossRefPubMedGoogle Scholar
  42. Lopez-Verrilli M, Caviedes A, Cabrera A, Sandoval S, Wyneken U, Khoury M (2016) Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 320:129–139CrossRefPubMedGoogle Scholar
  43. Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ, Hernandez AG, Smalheiser NR (2015) Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PloS One 10:e0139233CrossRefPubMedPubMedCentralGoogle Scholar
  44. Morel L et al (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288:7105–7116CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2:a006338CrossRefPubMedPubMedCentralGoogle Scholar
  46. Parihar MS, Brewer GJ (2010) Amyloid-β as a modulator of synaptic plasticity. J Alzheimers Dis 22:741–763CrossRefPubMedPubMedCentralGoogle Scholar
  47. Park C-K, Xu Z-Z, Berta T, Han Q, Chen G, Liu X-J, Ji R-R (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82:47–54CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pegtel D, Peferoen L, Amor S (2014a) Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci 369:20130516CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pegtel DM, Peferoen L, Amor S (2014b) Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci 369. CrossRefGoogle Scholar
  50. Pitt JM, Kroemer G, Zitvogel L (2016) Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 126:1139CrossRefPubMedPubMedCentralGoogle Scholar
  51. Quek C, Hill AF (2017) The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun 483:1178–1186CrossRefPubMedGoogle Scholar
  52. Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46CrossRefPubMedGoogle Scholar
  53. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98CrossRefPubMedGoogle Scholar
  55. Rusu E, Necula LG, Neagu AI, Alecu M, Stan C, Albulescu R, Tanase CP (2016) Current status of stem cell therapy: opportunities and limitations. Turk J Biol 40:955–967CrossRefGoogle Scholar
  56. Schindowski K, Belarbi K, Buee L (2008) Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 7:43–56CrossRefPubMedPubMedCentralGoogle Scholar
  57. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shi M et al (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128:639–650CrossRefPubMedPubMedCentralGoogle Scholar
  59. Stremersch S, De Smedt SC, Raemdonck K (2016) Therapeutic and diagnostic applications of extracellular vesicles. J Control Release 244:167–183CrossRefPubMedGoogle Scholar
  60. Tan L, Yu JT, Liu QY, Tan MS, Zhang W, Hu N, Wang YL, Sun L, Jiang T, Tan L (2014) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336:52–56CrossRefPubMedGoogle Scholar
  61. Toy D, Namgung U (2013) Role of glial cells in axonal regeneration. Exp Neurobiol 22:68–76CrossRefPubMedPubMedCentralGoogle Scholar
  62. Urbanelli L, Buratta S, Sagini K, Ferrara G, Lanni M, Emiliani C (2015) Exosome-based strategies for diagnosis and therapy. Recent Pat CNS Drug Discov 10:10–27CrossRefPubMedGoogle Scholar
  63. Urbanelli L, Buratta S, Sagini K, Tancini B, Emiliani C (2016) Extracellular vesicles as new players in cellular senescence. Int J Mol Sci 17:1408CrossRefPubMedCentralGoogle Scholar
  64. Uttara B, Singh AV, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vella LJ, Hill AF, Cheng L (2016) Focus on extracellular vesicles: exosomes and their role in protein trafficking and biomarker potential in Alzheimer’s and parkinson’s disease. Int J Mol Sci 17:173CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vijay K, Ramanan AJS (2013) Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegener Dis 2:145–175Google Scholar
  67. Wang C-E, Zhou H, McGuire JR, Cerullo V, Lee B, Li S-H, Li X-J (2008) Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol 181:803–816CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang W, Li H, Zhou Y, Jie S (2013) Peripheral blood microvesicles are potential biomarkers for hepatocellular carcinoma. Cancer Biomark 13:351–357CrossRefPubMedGoogle Scholar
  69. Williams SM, Schulz P, Sierks MR (2016) Oligomeric α-synuclein and β-amyloid variants as potential biomarkers for Parkinson’s and Alzheimer’s disease. Eur J Neurosci 43:3–16CrossRefPubMedGoogle Scholar
  70. Wong BK et al (2015) Partial rescue of some features of Huntington disease in the genetic absence of caspase-6 in YAC128 mice. Neurobiol Dis 76:24–36CrossRefPubMedGoogle Scholar
  71. Yang N et al (2017a) The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma. Oncotarget 8:3683PubMedGoogle Scholar
  72. Yang Y, Ye Y, Su X, He J, Bai W, He X (2017b) MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front Cell Neurosci 11:55PubMedPubMedCentralGoogle Scholar
  73. Yoon YJ, Kim OY, Gho YS (2014) Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 47:531CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yuyama K et al (2014) Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 289:24488–24498CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO (2016) Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 126:1198–1207CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang Y, Pardridge WM (2009) Near complete rescue of experimental Parkinson’s disease with intravenous, non-viral GDNF gene therapy. Pharm Res 26:1059–1063CrossRefPubMedGoogle Scholar
  77. Zhang X, Abels ER, Redzic JS, Margulis J, Finkbeiner S, Breakefield XO (2016) Potential transfer of polyglutamine and CAG-repeat RNA in extracellular vesicles in Huntington’s disease: background and evaluation in cell culture. Cell Mol Neurobiol 36:459–470CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  2. 2.Human and Animal Cell BankIranian Biological Resource Center (IBRC), ACECRTehranIran
  3. 3.Department of Neurology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS TrustLondonUK
  4. 4.Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran

Personalised recommendations