Advertisement

Microbiome Dysbiosis and Predominant Bacterial Species as Human Cancer Biomarkers

  • Mohsen Sagheb R. Shirazi
  • K. Z. K. Al-Alo
  • Mohammed Hashim Al-Yasiri
  • Zainab M. Lateef
  • Abdolmajid GhasemianEmail author
Review Article

Abstract

Purpose

To evaluate bacterial agents as cancer biomarkers.

Methods and Results

Various bacterial species have been demonstrated to involve in human cancers. However, the data is not enough for better understanding of predominant specific species. Application of a rapid and early-diagnostic, cost-effective, non-invasive, and inclusive method is a crucial approach for obtaining valid results. The role of Helicobacter pylori (H. pylori) in gastric and duodenal cancer has been confirmed. From investigation among previous publications, we attempted to make it clear which bacterial species significantly and specifically increase in various cancer types. It was unraveled that there is significant change in Granulicatella adiacens (G. adiacens) in lung cancer (LC), Fusobacterium nucleatum (F. nucleatum) in colorectal cancer (CRC), H. pylori and Porphyromonas gingivalis (P. gingivalis) in pancreatic cancer, and Streptococcus spp. in oral cancer.

Conclusion

Alteration in the cell cycle by means of different mechanisms such as inflammation, alteration in cell signaling, invasion and immune evasion, specific niche colonization, induction of DNA damage and mutation, expression of some microRNAs, and enhancing epigenetic effects are the most common mechanisms employed by bacterial species.

Keywords

Bacterial biomarkers Cancer Microbiome Dysbiosis 

Notes

Funding Information

This study was supported by Islamic Azad University, Tehran, Iran.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chen Y-L, Mo X-Q, Huang G-R, Huang Y-Q, Xiao J, Zhao L-J, et al. Gene polymorphisms of pathogenic Helicobacter pylori in patients with different types of gastrointestinal diseases. World J Gastroenterol. 2016;22(44):9718–26.CrossRefGoogle Scholar
  2. 2.
    Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014;19(s1):1–5.CrossRefGoogle Scholar
  3. 3.
    Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2011:gutjnl–2011-300784.Google Scholar
  4. 4.
    Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, et al. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol. 2015;50(2):167–79.CrossRefGoogle Scholar
  5. 5.
    Yu J, Feng Q, Wong SH, Zhang D, yi Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2015:gutjnl–2015-309800.Google Scholar
  6. 6.
    Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis. 2013;34(10):2193–7.CrossRefGoogle Scholar
  7. 7.
    Michaud DS, Izard J. Microbiota, oral microbiome, and pancreatic cancer. Cancer J. 2014;20(3):203–6.CrossRefGoogle Scholar
  8. 8.
    Ahn J, Segers S, Hayes RB. Periodontal disease, Porphyromonas g ingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis. 2012;33(5):1055–8.CrossRefGoogle Scholar
  9. 9.
    O’keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13(12):691–706.CrossRefGoogle Scholar
  10. 10.
    Chow SC, Gowing SD, Cools-Lartigue JJ, Chen CB, Berube J, Yoon HW, et al. Gram negative bacteria increase non-small cell lung cancer metastasis via toll-like receptor 4 activation and mitogen-activated protein kinase phosphorylation. Int J Cancer. 2015;136(6):1341–50.CrossRefGoogle Scholar
  11. 11.
    Abdelouhab K, Rafa H, Toumi R, Bouaziz S, Medjeber O, Touil-Boukoffa C. Mucosal intestinal alteration in experimental colitis correlates with nitric oxide production by peritoneal macrophages: effect of probiotics and prebiotics. Immunopharmacol Immunotoxicol. 2012;34(4):590–7.CrossRefGoogle Scholar
  12. 12.
    Ahasan A, Agazzi A, Invernizzi G, Bontempo V, Savoini G. The beneficial role of probiotics in monogastric animal nutrition and health. J Dairy Vet Anim Res. 2015;2(4):1–20.Google Scholar
  13. 13.
    Al Kassaa I, Hober D, Hamze M, Chihib N, Drider D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins. 2014;6(3–4):177–85.CrossRefGoogle Scholar
  14. 14.
    AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid-Based Child Health: Cochrane Rev J. 2014;9(3):584–671.CrossRefGoogle Scholar
  15. 15.
    Bron PA, Van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol. 2012;10(1):66–78.CrossRefGoogle Scholar
  16. 16.
    Cagliero P, Marini E, Cena C, Veglia F, Guardamagna O. Probiotics supplementation and antioxidant activity in children affected by primary hyperlipidemia. Atherosclerosis. 2014;235(2):e266–7.CrossRefGoogle Scholar
  17. 17.
    Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16(10):406.CrossRefGoogle Scholar
  18. 18.
    Sobhani I, Amiot A, Le Baleur Y, Levy M, Auriault M-L, Van Nhieu JT, et al. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Ther Adv Gastroenterol. 2013;6(3):215–29.CrossRefGoogle Scholar
  19. 19.
    Brenner DR, McLaughlin JR, Hung RJ. Previous lung diseases and lung cancer risk: a systematic review and meta-analysis. PLoS One. 2011;6(3):e17479.CrossRefGoogle Scholar
  20. 20.
    Cameron SJ, Lewis KE, Huws SA, Hegarty MJ, Lewis PD, Pachebat JA, et al. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One. 2017;12(5):e0177062.CrossRefGoogle Scholar
  21. 21.
    Rybojad P, Los R, Sawicki M, Tabarkiewicz J, Malm A. Anaerobic bacteria colonizing the lower airways in lung cancer patients. Folia Histochem Cytobiol. 2011;49(2):263–6.CrossRefGoogle Scholar
  22. 22.
    Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82.CrossRefGoogle Scholar
  23. 23.
    Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis. 2014;33(8):1381–90.CrossRefGoogle Scholar
  24. 24.
    Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105(24):1907–11.CrossRefGoogle Scholar
  25. 25.
    Ahn J, Chen CY, Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control. 2012;23(3):399–404.CrossRefGoogle Scholar
  26. 26.
    Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26(4):781–91.CrossRefGoogle Scholar
  27. 27.
    Edgren G, Hjalgrim H, Rostgaard K, Norda R, Wikman A, Melbye M, et al. Risk of gastric cancer and peptic ulcers in relation to ABO blood type: a cohort study. Am J Epidemiol. 2010;172(11):1280–5.CrossRefGoogle Scholar
  28. 28.
    Risch HA, Yu H, Lu L, Kidd MS. ABO blood group, Helicobacter pylori seropositivity, and risk of pancreatic cancer: a case–control study. J Natl Cancer Inst. 2010;102(7):502–5.CrossRefGoogle Scholar
  29. 29.
    Hayes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L, et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018;4(3):358–65.CrossRefGoogle Scholar
  30. 30.
    Chapkin RS. Robert Chapkin on Relationships Between the Gut Microbiome, Diet, and Colorectal Cancer. Oncol. 2018 15;32(5).Google Scholar
  31. 31.
    Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018;19(6):e295–304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Central Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Veterinary Clinical Sciences, Faculty of Veterinary MedicineUniversity of KufaKufaIraq
  3. 3.Biology Department, College of ScienceUniversity of ThiQarNasiriyahIraq
  4. 4.University of BaghdadBaghdadIraq

Personalised recommendations