Journal of Gastrointestinal Cancer

, Volume 48, Issue 3, pp 282–285 | Cite as

Radiological Response to the Locoregional Treatment in Hepatocellular Carcinoma: RECIST, mRECIST, and Others

  • Mecit KantarciEmail author
  • Berhan Pirimoglu
Review Article


Hepatocellular carcinoma (HCC) is the sixth most common tumor worldwide [ 1]. Locoregional treatment choices for HCC include molecular-targeted chemotherapy, yttrium-90 radioembolization, and interventional radiological methods including transcatheter arterial chemoembolization (TACE) and radiofrequency ablation (RFA) [ 2, 3]. Imaging has a very important role in the management of HCC and the efficacy of treatment is usually monitored and evaluated radiologically. Response to therapy has been evaluated by morphologic methods using different criteria such as the World Health Organization (WHO) criteria or the Response Evaluation Criteria in Solid Tumors (RECIST) in treatment (Table 1). However, the development of advanced therapies has required novel methods for evaluating response to treatment. This need has led to development of tumor- or therapy-specific guidelines such as the modified computed tomography (CT) Response Evaluation (Choi) Criteria for gastrointestinal...


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat rev Clin Oncol. 2011;8:292–301.CrossRefGoogle Scholar
  2. 2.
    Lo CM, Ngan H, Tso WK, Liu CL, Lam CM, Poon RT, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35:1164–71.CrossRefGoogle Scholar
  3. 3.
    Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48:1312–27.CrossRefGoogle Scholar
  4. 4.
    Hennedige T, Venkatesh SK. Imaging of hepatocellular carcinoma: diagnosis, staging and treatment monitoring. Cancer Imaging. 2013;12:530–47.CrossRefGoogle Scholar
  5. 5.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefGoogle Scholar
  6. 6.
    Nishino M, Jackman DM, Hatabu H, Yeap BY, Cioffredi LA, Yap JT, et al. New response evaluation criteria in solid tumors (RECIST) guidelines for advanced non-small cell lung cancer: comparison with original RECIST and impact on assessment of tumor response to targeted therapy. AJR am J Roentgenol. 2010;195:W221–8.CrossRefGoogle Scholar
  7. 7.
    Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinibmesylate: proposal of new computed tomography response criteria. J ClinOncol. 2007;25:1753–9.CrossRefGoogle Scholar
  8. 8.
    Kambadakone AR, Sahani DV. Body perfusion CT: technique, clinical applications, and advances. Radiol Clin N am. 2009;47:161–78.CrossRefGoogle Scholar
  9. 9.
    Okada M, Kim T, Murakami T. Hepatocellular nodules in liver cirrhosis: state of the art CT evaluation (perfusion CT/volume helical shuttle scan/dual-energy CT, etc.). Abdom Imaging. 2011;36:273–81.CrossRefGoogle Scholar
  10. 10.
    Ogul H, Bayraktutan U, Kizrak Y, Pirimoglu B, Yuceler Z, Sagsoz ME, et al. Abdominal perfusion computed tomography. Eurasian J med. 2013;45:50–7.CrossRefGoogle Scholar
  11. 11.
    Pirimoglu B, Sade R, Ogul H, Kantarci M, ErenS LA. How can new imaging modalities help in the practice of radiology? Eurasian J med. 2016;48:213–21.CrossRefGoogle Scholar
  12. 12.
    Kan Z, Kobayashi S, Phongkitkarun S, Charnsangavej C. Functional CT quantification of tumor perfusion after transhepatic arterial embolization in a rat model. Radiology. 2005;237:144–50.CrossRefGoogle Scholar
  13. 13.
    Tsushima Y, Funabasama S, Aoki J, Sanada S, Endo K. Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data. Acad Radiol. 2004;11:215–23.CrossRefGoogle Scholar
  14. 14.
    Hagiwara M, Rusinek H, Lee VS, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging initial experience. J Magn Reson Imaging. 2003;18:372–6.CrossRefGoogle Scholar
  15. 15.
    Chen X, Xiao E, Shu D, Yang C, Liang B, He Z, et al. Evaluating the therapeutic effect of hepatocellular carcinoma treated with transcatheter arterial chemoembolization by magnetic resonance perfusion imaging. Eur J Gastroenterol Hepatol. 2014;26:109–13.CrossRefGoogle Scholar
  16. 16.
    Mehdizade A, Somon T, Wetzel S, Kelekis A, Martin JB, Scheidegger JR, et al. Diffusion weighted MR imaging on a low-field open magnet. Comparison with findings at 1.5T in 18 patients with cerebral ischemia. J Neuroradiol. 2003;30:25–30.PubMedGoogle Scholar
  17. 17.
    Bonekamp S, Jolepalem P, Lazo M, Gulsun MA, Kiraly AP, Kamel IR. Hepatocellular carcinoma: response to TACE assessed with semiautomated volumetric and functional analysis of diffusion weighted and contrast-enhanced MR imaging data. Radiology. 2011;260:752–61.CrossRefGoogle Scholar
  18. 18.
    Yu JS, Kim JH, Chung JJ, Kim KW. Added value of diffusion weighted imaging in the MRI assessment of perilesional tumor recurrence after chemoembolization of hepatocellular carcinomas. J Magn Reson Imaging. 2009;30:153–60.CrossRefGoogle Scholar
  19. 19.
    Mannelli L, Kim S, Hajdu CH, Babb JS, Taouli B. Serial diffusion weighted MRI in patients with hepatocellular carcinoma: prediction and assessment of response to transarterial chemoembolization. Preliminary experience. Eur J Radiol. 2013;82:577–82.CrossRefGoogle Scholar
  20. 20.
    Dijkstra H, Baron P, Kappert P, Oudkerk M, Sijens PE. Effects of microperfusion in hepatic diffusion weighted imaging. Eur Radiol. 2012;22:891–9.CrossRefGoogle Scholar
  21. 21.
    Watanabe H, Kanematsu M, Goshima S, Kajita K, Kawada H, Noda Y, et al. Characterizing focal hepatic lesions by free-breathing intravoxel incoherent motion MRI at 3.0 T. Acta Radiol. 2014;55:1166–73.CrossRefGoogle Scholar
  22. 22.
    Penner AH, Sprinkart AM, Kukuk GM, Gütgemann I, Gieseke J, Schild HH, et al. Intravoxel incoherent motion model-based liver lesion characterisation from three b-value diffusion-weighted MRI. Eur Radiol. 2013;23:2773–83.CrossRefGoogle Scholar
  23. 23.
    Park YS, Lee CH, Kim JH, Kim IS, Kiefer B, Seo TS, et al. Using intravoxel incoherent motion (IVIM) MR imaging to predict lipiodol uptake in patients with hepatocellular carcinoma following transcatheter arterial chemoembolization: a preliminary result. Magn Reson Imaging. 2014;32:638–46.CrossRefGoogle Scholar
  24. 24.
    Jiang R, Jiang J, Zhao L, Zhang J, Zhang S, Yao Y, et al. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation. Oncotarget. 2015;6:42380–93.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yuan L, Sun M, Chen Y, Long M, Zhao X, Yin J, et al. Non-Gaussian diffusion alterations on diffusion kurtosis imaging in patients with early Alzheimer’s disease. Neurosci Lett. 2016;616:11–8.CrossRefGoogle Scholar
  26. 26.
    Goshima S, Kanematsu M, Noda Y, Kondo H, Watanabe H, Bae KT. Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. AJR am J Roentgenol. 2015;204:543–9.CrossRefGoogle Scholar
  27. 27.
    Martín Noguerol T, Sánchez-González J, Martínez Barbero JP, García-Figueiras R, Baleato-González S, Luna A. Clinical imaging of tumor metabolism with 1H magnetic resonance spectroscopy. Magn Reson Imaging Clin N am. 2016;24:57–86.CrossRefGoogle Scholar
  28. 28.
    Kuo YT, Li CW, Chen CY, Jao J, Wu DK, Liu GC. In vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scanner. J Magn Reson Imaging. 2004;19:598–604.CrossRefGoogle Scholar
  29. 29.
    Zaidi H, Mawlawi O, Orton CG. Point/counterpoint. Simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys. 2007;34:1525–8.CrossRefGoogle Scholar
  30. 30.
    Fowler KJ, Maughan NM, Laforest R, Saad NE, Sharma A, Olsen J, et al. PET/MRI of hepatic 90Y microsphere deposition determines individual tumor response. Cardiovasc Intervent Radiol. 2016;39:855–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Radiology, Faculty of MedicineAtaturk UniversityErzurumTurkey

Personalised recommendations