Journal of Gastrointestinal Cancer

, Volume 48, Issue 3, pp 222–224 | Cite as

Molecular Pathogenesis of Liver Cancer

  • Mehmet OzturkEmail author
  • Tugce Batur
  • Umut Ekin
  • Aybike Erdogan
  • Evin İscan
  • Umur Keles
  • Ozden Oz
  • Cigdem Ozen
Review Article


Most frequent primary liver cancers are hepatocellular carcinoma (HCC) and cholangiocarcinoma in adults, and hepatoblastoma in children. More than 80% of liver tumors are HCCs [1]. This short review will focus primarily on the molecular pathogenesis of HCC; readers are referred to our previous reviews for a more comprehensive analysis [2, 3]. Worldwide, each year, more than 740,000 people die of HCC [4]. The most efficient treatment for HCC is liver transplantation provided that it is detected early enough. Surgical removal and chemo-embolization of tumor nodules are other alternatives. These tumors are usually resistant to chemo- or radiotherapy [1]. Only one drug, namely sorafenib, is approved for targeted therapy of HCC, but its efficacy is very limited [5].

The etiology of HCCs is well known. Chronic liver injury associated primarily with hepatitis B (HBV) and C (HCV) viruses constitutes the most important cause of HCC. Other factors such as alcohol abuse and dietary...



The author’s research is supported by grants from the TÜBİTAK (109S191 and 111T558) with additional support from the Ministry of Development and Turkish Academy of Sciences.


  1. 1.
    El-Serag HB. Hepatocellular carcinoma. N Engl J med. 2011;365:1118–27.CrossRefGoogle Scholar
  2. 2.
    Alotaibi H, Atabey N, Diril K, Erdal E, Ozturk M. Molecular Mechanisms of hepatocellular carcinoma. In: Current clinical oncology 2016—hepatocellular carcinoma diagnosis and treatment, pp 43–63, BI Carr (editor), Springer, 2016.Google Scholar
  3. 3.
    Ozen C, Yildiz G, Dagcan AT, Cevik F, Ors A, Keles U, et al. Genetics and epigenetics of liver cancer. New Biotechnol. 2013;30:381–4.CrossRefGoogle Scholar
  4. 4.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.Google Scholar
  5. 5.
    Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.CrossRefGoogle Scholar
  6. 6.
    El-Serag HB, Kanwal F. Obesity and hepatocellular carcinoma: hype and reality. Hepatology. 2014;60:779–81.CrossRefGoogle Scholar
  7. 7.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.CrossRefGoogle Scholar
  8. 8.
    Buendia MA. Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects. Med Pediatr Oncol. 2002;39:530–5.CrossRefGoogle Scholar
  9. 9.
    Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.CrossRefGoogle Scholar
  10. 10.
    Brechot C, Pourcel C, Louise A, Rain B, Tiollais P. Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature. 1980;286:533–5.CrossRefGoogle Scholar
  11. 11.
    Brechot C, Gozuacik D, Murakami Y, Paterlini-Brechot P. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Semin Cancer Biol. 2000;10:211–31.CrossRefGoogle Scholar
  12. 12.
    Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44:760–4.CrossRefGoogle Scholar
  13. 13.
    Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S a. 1990;87:1973–7.CrossRefGoogle Scholar
  14. 14.
    Ozturk M. Genetic aspects of hepatocellular carcinogenesis. Semin Liver dis. 1999;19:235–42.CrossRefGoogle Scholar
  15. 15.
    Ozturk M, Arslan-Ergul A, Bagislar S, Senturk S, Yuzugullu H. Senescence and immortality in hepatocellular carcinoma. Cancer Lett. 2009;286:103–13.CrossRefGoogle Scholar
  16. 16.
    Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet. 2012;44:1117–21.CrossRefGoogle Scholar
  17. 17.
    Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339:959–61.CrossRefGoogle Scholar
  18. 18.
    Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S a. 2013;110:6021–6.CrossRefGoogle Scholar
  19. 19.
    Liu X, Wu G, Shan Y, Hartmann C, von Deimling A, Xing M. Highly prevalent TERT promoter mutations in bladder cancer and glioblastoma. Cell Cycle. 2013;12:1637–8.CrossRefGoogle Scholar
  20. 20.
    Nault JC, Calderaro J, Di Tommaso L, Balabaud C, Zafrani ES, Bioulac-Sage P, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60:1983–92.CrossRefGoogle Scholar
  21. 21.
    Nonoguchi N, Ohta T, Oh J-E, Kim Y-H, Kleihues P, Ohgaki H. TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol. 2013;126:931–7.CrossRefGoogle Scholar
  22. 22.
    Cevik D, Yildiz G, Ozturk M. Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinoma from different geographical locations. World J Gastroenterol. 2015;21:311–5.CrossRefGoogle Scholar
  23. 23.
    Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat med. 2011;17:330–9.CrossRefGoogle Scholar
  24. 24.
    Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet dev. 2012;22:50–5.CrossRefGoogle Scholar
  25. 25.
    Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett. 2012;342:223–30.CrossRefGoogle Scholar
  26. 26.
    Sceusi EL, Loose DS, Wray CJ. Clinical implications of DNA methylation in hepatocellular carcinoma. HPB (Oxford). 2011;13:369–76.CrossRefGoogle Scholar
  27. 27.
    Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, et al. microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol. 2010;6:402.CrossRefGoogle Scholar
  28. 28.
    Lachenmayer A, Alsinet C, Savic R, Cabellos L, Toffanin S, Hoshida Y, et al. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin Cancer res. 2012;18:4997–5007.CrossRefGoogle Scholar
  29. 29.
    Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006;25:2537–45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mehmet Ozturk
    • 1
    Email author
  • Tugce Batur
    • 1
  • Umut Ekin
    • 1
  • Aybike Erdogan
    • 1
  • Evin İscan
    • 1
  • Umur Keles
    • 1
  • Ozden Oz
    • 1
  • Cigdem Ozen
    • 1
  1. 1.Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTurkey

Personalised recommendations