Propofol/Remifentanil Anesthesia Might Not Alter the Middle Cerebral Artery Diameter by Digital Subtraction Angiography

  • Stefano Arrigoni-MaroccoEmail author
  • Nicolas Engrand
  • Vittorio Civelli
  • Joaquim Mateo
  • Marc-Antoine Labeyrie
  • Jean-Pierre Saint-Maurice
  • Alexandre Mebazaa
  • Etienne Gayat
  • Emmanuel Houdart
  • Fabrice Vallée
Original Work



Transcranial Doppler (TCD) of the middle cerebral artery (MCA) enables the measurement of the mean blood velocity (MCAVm) and the estimation of the cerebral blood flow (CBF), provided that no significant changes occur in the MCA diameter (MCADiam). Previous studies described a decrease in the MCAVm associated with the induction of total intravenous anesthesia (TIVA) by propofol and remifentanil. This decrease in blood velocity might be interpreted as a decrease in the CBF only where the MCADiam is not modified across TCD examinations.


In this observational study, we measured the MCADiam of 24 subjects (almost exclusively females) on digital subtraction angiography under awake and TIVA conditions.


Across the two phases, we observed a decrease in the mean arterial blood pressure (from 84 ± 9 to 71 ± 6 mmHg; p < 0.001) and heart rate (76 ± 10 vs. 65 ± 8 beats/min; p < 0.001), and a concomitant decrease in the MCAVm (61 vs. 42 cm/s; p < 0.001). In contrast, the MCADiam did not vary in association with TIVA (2.3 ± 0.2 vs. 2.3 ± 0.2 mm; p = 0.52).


Those results suggested that in this population, no significant changes in the MCADiam are associated with TIVA.


Cerebral blood flow Digital subtraction angiography Middle cerebral artery General anesthesia Transcranial Doppler 


Author Contributions

SAM contributed to original idea, patients’ recruitment, data collection, arterial diameter measurements, statistic analysis, and manuscript writing. NE contributed to original idea, study design, and manuscript writing. VC performed neuroradiological procedures, venous pressure and arterial diameters measurements, and critical revision. JM contributed to critical revision. MAL performed neuroradiological procedures and venous pressure measurements and critical revision. JPSM performed neuroradiological procedures and pressure measurements and critical revision. AM contributed to critical revision and project supervision. EG contributed to critical revision and project supervision. EH performed neuroradiological procedures and pressure measurements and critical revision. FV contributed to original idea, study design and direction, and manuscript writing.

Source of support

This research received no specific grant from any funding agency in the public, commercial, or non-profit sectors.

Conflict of interest

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Smielewski P, Czosnyka M, Kirkpatrick P, McEroy H, Rutkowska H, Pickard JD. Assessment of cerebral autoregulation using carotid artery compression. Stroke. 1996;27(12):2197–203.CrossRefPubMedGoogle Scholar
  2. 2.
    Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol Bethesda Md 1985. 1997;82(4):1256–69.Google Scholar
  3. 3.
    Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98(6):1227–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Lanfranchi PA, Somers VK. Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R815–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Donnelly J, Aries MJ, Czosnyka M. Further understanding of cerebral autoregulation at the bedside: possible implications for future therapy. Expert Rev Neurother. 2015;15(2):169–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.CrossRefPubMedGoogle Scholar
  7. 7.
    D’Andrea A, Conte M, Scarafile R, Riegler L, Cocchia R, Pezzullo E, et al. Transcranial Doppler ultrasound: Physical principles and principal applications in neurocritical care unit. J Cardiovasc Echogr. 2016;26(2):28.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Compton JS, Redmond S, Symon L. Cerebral blood velocity in subarachnoid haemorrhage: a transcranial Doppler study. J Neurol Neurosurg Psychiatry. 1987;50(11):1499–503.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cigada M, Marzorati S, Tredici S, Iapichino G. Cerebral CO2 vasoreactivity evaluation by transcranial Doppler ultrasound technique: a standardized methodology. Intensive Care Med. 2000;26(6):729–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Feri M, Ralli L, Felici M, Vanni D, Capria V. Transcranial Doppler and brain death diagnosis. Crit Care Med. 1994;22(7):1120–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Giller CA, Purdy P, Giller A, Batjer HH, Kopitnik T. Elevated transcranial Doppler ultrasound velocities following therapeutic arterial dilation. Stroke. 1995;26(1):123–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Brauer P, Kochs E, Werner C, Bloom M, Policare R, Pentheny S, et al. Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology. J Neurosurg Anesthesiol. 1998;10(2):80–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Moppett IK, Mahajan RP. Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth. 2004;93(5):710–24.CrossRefPubMedGoogle Scholar
  14. 14.
    Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32(5):737–41 (discussion 741–742).CrossRefPubMedGoogle Scholar
  15. 15.
    Verbree J, Bronzwaer A, van Buchem MA, Daemen M, van Lieshout JJ, van Osch M. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2017;37(8):2921–7.CrossRefGoogle Scholar
  16. 16.
    Conti A. Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia: transcranial Doppler study under bispectral index monitoring. Br J Anaesth. 2006;97(3):333–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Purrucker JC, Renzland J, Uhlmann L, Bruckner T, Hacke W, Steiner T, et al. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa ®: an observational study † †Parts of this work have been presented and awarded at the annual meeting of the German Interdisciplinary Association of Intensive Care and Emergency Medicine (DIVI), December 2013, Leipzig, Germany. Br J Anaesth. 2015;114(6):934–43.CrossRefPubMedGoogle Scholar
  18. 18.
    Vandesteene A, Trempont V, Engelman E, Deloof T, Focroul M, Schoutens A, et al. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia. 1988;43(Suppl):42–3.CrossRefPubMedGoogle Scholar
  19. 19.
    Schregel W, Bredenkötter U, Sihle-Wissel M, Cunitz G. Transkranielle Dopplersonographie: effekte intravenöser Anästhetika bei neurochirurgischen Patienten. Ultraschall Med. 2008;16(02):60–4.CrossRefGoogle Scholar
  20. 20.
    Nakamura K, Hatano Y, Hirakata H, Nishiwada M, Toda H, Mori K. Direct vasoconstrictor and vasodilator effects of propofol in isolated dog arteries. Br J Anaesth. 1992;68(2):193–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Gelb AW, Zhang C, Hamilton JT. Propofol induces dilation and inhibits constriction in guinea pig basilar arteries. Anesth Analg. 1996;83(3):472–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Turan N, Heider RA, Roy AK, Miller BA, Mullins ME, Barrow DL, et al. Current perspectives in imaging modalities for the assessment of unruptured intracranial aneurysms: a comparative analysis and review. World Neurosurg. 2018;113:280–92.CrossRefPubMedGoogle Scholar
  23. 23.
    Vallée F, Passouant O, Le Gall A, Joachim J, Mateo J, Mebazaa A, et al. Norepinephrine reduces arterial compliance less than phenylephrine when treating general anesthesia-induced arterial hypotension. Acta Anaesthesiol Scand. 2017;61(6):590–600.CrossRefPubMedGoogle Scholar
  24. 24.
    Tarasów E, Abdulwahed Saleh Ali A, Lewszuk A, Walecki J. Measurements of the middle cerebral artery in digital subtraction angiography and MR angiography. Med Sci Monit Int Med J Exp Clin Res. 2007;13(Suppl 1):65–72.Google Scholar
  25. 25.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet Lond Engl. 1986;1(8476):307–10.CrossRefGoogle Scholar
  26. 26.
    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31(7):1672–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Möller Petrun A, Kamenik M. Bispectral index-guided induction of general anaesthesia in patients undergoing major abdominal surgery using propofol or etomidate: a double-blind, randomized, clinical trial. Br J Anaesth. 2013;110(3):388–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Alkire MT, Haier RJ, Barker SJ, Shah NK, Wu JC, Kao YJ. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology. 1995;82(2):393–403 (discussion 27A).CrossRefPubMedGoogle Scholar
  30. 30.
    Johnston AJ, Steiner LA, Chatfield DA, Coleman MR, Coles JP, Al-Rawi PG, et al. Effects of propofol on cerebral oxygenation and metabolism after head injury. Br J Anaesth. 2003;91(6):781–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Harrison JM, Girling KJ, Mahajan RP. Effects of target-controlled infusion of propofol on the transient hyperaemic response and carbon dioxide reactivity in the middle cerebral artery. Br J Anaesth. 1999;83(6):839–44.CrossRefPubMedGoogle Scholar
  32. 32.
    Van Hemelrijck J, Fitch W, Mattheussen M, Van Aken H, Plets C, Lauwers T. Effect of propofol on cerebral circulation and autoregulation in the baboon. Anesth Analg. 1990;71(1):49–54.PubMedGoogle Scholar
  33. 33.
    Ciobanu L, Reynaud O, Uhrig L, Jarraya B, Le Bihan D. Effects of anesthetic agents on brain blood oxygenation level revealed with ultra-high field MRI. Chang AYW, editor. PLoS ONE. 2012;7(3):e32645.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kadoi Y, Saito S. Effects of adding remifentanil to propofol anesthesia on systemic hemodynamics, cardiac output, and middle cerebral artery flow velocity during electroconvulsive therapy: a pilot study. J ECT. 2015;31(2):98–100.CrossRefPubMedGoogle Scholar
  35. 35.
    Lagace A, Karsli C, Luginbuehl I, Bissonnette B. The effect of remifentanil on cerebral blood flow velocity in children anesthetized with propofol1. Pediatr Anesth. 2004;14(10):861–5.CrossRefGoogle Scholar
  36. 36.
    Paris A, Scholz J, von Knobelsdorff G, Tonner PH, Esch JS. The effect of remifentanil on cerebral blood flow velocity. Anesth Analg. 1998;87(3):569–73.PubMedGoogle Scholar
  37. 37.
    Lenck S, Vallée F, Labeyrie M-A, Touitou V, Saint-Maurice J-P, Guillonnet A, et al. Stenting of the lateral sinus in idiopathic intracranial hypertension according to the type of stenosis. Neurosurgery. 2017;80(3):393–400.PubMedGoogle Scholar
  38. 38.
    Schregel W, Schaefermeyer H, Sihle-Wissel M, Klein R. Transcranial Doppler sonography during isoflurane/N2O anaesthesia and surgery: flow velocity, ‘vessel area’ and ‘volume flow’. Can J Anaesth J Can Anesth. 1994;41(7):607–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society 2019

Authors and Affiliations

  • Stefano Arrigoni-Marocco
    • 1
    Email author
  • Nicolas Engrand
    • 3
  • Vittorio Civelli
    • 4
  • Joaquim Mateo
    • 1
    • 2
  • Marc-Antoine Labeyrie
    • 4
  • Jean-Pierre Saint-Maurice
    • 4
  • Alexandre Mebazaa
    • 1
    • 2
    • 5
  • Etienne Gayat
    • 1
    • 2
    • 5
  • Emmanuel Houdart
    • 2
    • 4
  • Fabrice Vallée
    • 1
    • 2
    • 5
    • 6
  1. 1.Department of Anesthesia, Critical Care and Burn UnitHôpitaux Universitaires Saint Louis – Lariboisière, Assistance Publique – Hôpitaux de ParisParisFrance
  2. 2.Paris Diderot UniversityParisFrance
  3. 3.Anaesthesia and Intensive Care DivisionFondation RothschildParisFrance
  4. 4.Interventional Neuroradiology UnitHôpitaux Universitaires Saint Louis – Lariboisière, Assistance Publique – Hôpitaux de ParisParisFrance
  5. 5.UMR-S 942INSERMParisFrance
  6. 6.LMS, Ecole Polytechnique, M3DISIM, Inria, CNRSUniversité Paris-SaclaySaint-AubinFrance

Personalised recommendations